总结可以帮助我们发现问题,解决问题。完美的总结需要我们有足够的时间进行思考和整理。以下是环保专家总结的减少碳排放的措施和方法,请大家共同努力。
六年级下册圆柱的表面积教学设计篇一
学生的学习水平有差异,在学习中可能会出现有的学生不知道怎么求圆柱侧面积,不会把曲面转化成学过的平面图形;或是有的同学已经知道怎么求圆柱的侧面积,但不能结合实验操作清晰地表述圆柱侧面积计算方法的推导过程。学生对动手操作较感兴趣,通过探索操作活动,小组合作与自主探究相结合的学习方式,有助于提高学生观察能力、自主探究能力,并发展学生的空间观念及合作学习的能力。
【教学目标】。
1、掌握圆柱侧面积和表面积的概念。
2、探索求圆柱的侧面积、表面积的计算方法,并能运用到实际中解决问题。
3、理解和掌握圆柱侧面积、表面积的计算方法,能正确计算圆柱的侧面积、表面积。
4、培养合作意识和主动探求知识的学习品质,培养学生的创新精神和实践能力。
【教学难点】将展开图与圆柱体的各部分建立联系,并推导出圆柱侧面积的计算公式。
【教具准备】圆柱体纸盒、多媒体课件。
【教学过程】。
1、前面我们已经认识了圆柱体,谁来说一下你对它有哪些了解?
2、不错,今天我们来继续研究圆柱,出示圆柱,观察大屏幕,从图中你了解到哪些数学信息?(圆柱的底面半径是4厘米,高是10厘米)。
3、现在我们如果来做一个这样的盒子,你会想到什么数学问题?
4、这节课我们就一起来研究“圆柱的表面积”这个问题。
1、初步感知。
总结:圆柱所有面面积的总和就是圆柱的表面积。
(2)动手摸一摸,感受表面积。圆柱表面积包含哪几个部分?(两个底面面积+侧面面积)。
(3)圆柱的表面积怎么求?(两个底面积+侧面积)。
(4)圆柱的底面积很容易求出,但侧面是一个曲面,它的面积怎么求?你有什么想法?想象一下,圆柱的侧面展开后是一个怎么样的图形?你有什么想法。
2、侧面积。
(1)小组合作:
请各个小组沿高把它的侧面展开,研究一下这个问题,验证你的猜想。
(2)学生汇报。
(3)教师总结演示。
(4)推导圆柱侧面积公式。
3、表面积。
(1)总结表面积公式。
圆柱的表面积=上底面积+下底面积+侧面积=两个底面的面积+侧面积。
(2)共同解决课前提出的问题:要制作这个盒子至少需要多少平分米的包装纸?
侧面积:2×3.14×10×30=1884(cm2),底面积:102×3.14=314(cm2),表面积:314×2+1884=2512(cm2)。
1、现在我们自己尝试来算一算这两个圆柱的表面积。
过渡语:同学们在生活中我们经常会遇到许多有关圆柱表面积的问题,请同学们看屏幕,要解决下列问题,需要求圆柱体哪几部分的面积。
5、如果一段圆柱形的木头,截成两截,它的表面积会有什么变化呢?
同学们我们来回顾一下这节课你有那些收获?你有什么想提醒大家注意的吗?
请记住同学们善意的提醒,这节课就上到这!
侧面积=底面周长×高。
圆柱表面积=s侧=c×h=2πrhs表=2πrh+2πr2。
底面积×2=2πr2。
六年级下册圆柱的表面积教学设计篇二
第一组插座圆柱体。
1.培养幼儿辨别大小的视觉能力。
2.培养序列与配对的概念。
1.教师介绍工作区域,取铺工作毯、工作卡。
2.教师拿用具,托盘内放置嵌板,介绍今天的工作名称。
3.教师展示工作:
(1)用三指捏的方式从左侧的开始一个一个拿出来,放到对应的洞穴前面。
(2)三段式教学:将最大的和最小的放到前面,教师命名:这是最大的、这是最小的;请幼儿指一指哪个是最大的,哪个是最小的;教师手指着提问:这是xx,这是xx。将最大的和最小的放回原处。
(3)从最大的开始用右手捏住柄,左手食指、中指从前往后划,再用左手食指、中指从左向右划洞口,比较大小,放回洞穴后用食指、中指触摸洞穴划圈。
(4)用同样的方法将所有的放回。
(5)全部放回后,将其竖放,双手食指、中指沿边缘划。
4.幼儿尝试,教师指导。
5.工作结束,从哪拿得送回哪去。
1.插座圆柱体其他几组。
2.蒙眼做插座圆柱体组。
3.将四组全部拿出,将一样的圆柱体放在一起。
每个圆柱体只能嵌进适当的圆柱插座。
1.三指捏的方法。
2.每个圆柱体有自己特定的洞穴。
注意事项:(略)。
六年级下册圆柱的表面积教学设计篇三
本节内容是学生学习了长方体与正方体的表面积后,在充分理解了表面积的含义的基础上展开的。教材中选用了许多来自现实生活中的问题,通过想象和操作活动,使学生知道圆柱的侧面展开后可以是一个长方形,在操作中经历“圆柱侧面积”的探索过程,体会圆柱侧面展开图的长和宽与圆柱的有关量之间的关系,获得求“圆柱侧面积”的方法。
【学生分析】。
学生的学习水平有差异,在学习中可能会出现有的学生不知道怎么求圆柱侧面积,不会把曲面转化成学过的平面图形;或是有的同学已经知道怎么求圆柱的侧面积,但不能结合实验操作清晰地表述圆柱侧面积计算方法的推导过程。学生对动手操作较感兴趣,通过探索操作活动,小组合作与自主探究相结合的学习方式,有助于提高学生观察能力、自主探究能力,并发展学生的空间观念及合作学习的能力。
【教学目标】。
1、掌握圆柱侧面积和表面积的概念。
2、探索求圆柱的侧面积、表面积的计算方法,并能运用到实际中解决问题。
3、理解和掌握圆柱侧面积、表面积的计算方法,能正确计算圆柱的侧面积、表面积。
4、培养合作意识和主动探求知识的学习品质,培养学生的创新精神和实践能力。
【教学难点】将展开图与圆柱体的各部分建立联系,并推导出圆柱侧面积的计算公式。
【教具准备】圆柱体纸盒、多媒体课件。
【学具准备】圆柱形纸盒。
【教学过程】。
1、前面我们已经认识了圆柱体,谁来说一下你对它有哪些了解?
2、不错,今天我们来继续研究圆柱,出示圆柱,观察大屏幕,从图中你了解到哪些数学信息?(圆柱的底面半径是4厘米,高是10厘米)。
3、现在我们如果来做一个这样的盒子,你会想到什么数学问题?
4、这节课我们就一起来研究“圆柱的表面积”这个问题。
1、初步感知。
总结:圆柱所有面面积的总和就是圆柱的表面积。
(2)动手摸一摸,感受表面积。圆柱表面积包含哪几个部分?(两个底面面积+侧面面积)。
(3)圆柱的表面积怎么求?(两个底面积+侧面积)。
(4)圆柱的底面积很容易求出,但侧面是一个曲面,它的面积怎么求?你有什么想法?想象一下,圆柱的侧面展开后是一个怎么样的图形?你有什么想法。
2、侧面积。
(1)小组合作:
请各个小组沿高把它的侧面展开,研究一下这个问题,验证你的猜想。
(2)学生汇报。
(3)教师总结演示。
(4)推导圆柱侧面积公式。
3、表面积。
(1)总结表面积公式。
圆柱的表面积=上底面积+下底面积+侧面积=两个底面的面积+侧面积。
(2)共同解决课前提出的问题:要制作这个盒子至少需要多少平分米的包装纸?
侧面积:2×3.14×10×30=1884(cm2),底面积:102×3.14=314(cm2),表面积:314×2+1884=2512(cm2)。
1、现在我们自己尝试来算一算这两个圆柱的表面积。
过渡语:同学们在生活中我们经常会遇到许多有关圆柱表面积的问题,请同学们看屏幕,要解决下列问题,需要求圆柱体哪几部分的面积。
5、如果一段圆柱形的木头,截成两截,它的表面积会有什么变化呢?
四
同学们我们来回顾一下这节课你有那些收获?你有什么想提醒大家注意的吗?
请记住同学们善意的提醒,这节课就上到这!
侧面积=底面周长×高。
圆柱表面积=s侧=c×h=2πrhs表=2πrh+2πr2。
底面积×2=2πr2。
”的探索过程,体会圆柱侧面展开图的长和宽与圆柱的有关量之间的关系,获得求“圆柱侧面积”的方法。
【学生分析】。
学生的学习水平有差异,在学习中可能会出现有的学生不知道怎么求圆柱侧面积,不会把曲面转化成学过的平面图形;或是有的同学已经知道怎么求圆柱的侧面积,但不能结合实验操作清晰地表述圆柱侧面积计算方法的推导过程。学生对动手操作较感兴趣,通过探索操作活动,小组合作与自主探究相结合的学习方式,有助于提高学生观察能力、自主探究能力,并发展学生的空间观念及合作学习的能力。
【教学目标】。
1、掌握圆柱侧面积和表面积的概念。
2、探索求圆柱的侧面积、表面积的计算方法,并能运用到实际中解决问题。
3、理解和掌握圆柱侧面积、表面积的计算方法,能正确计算圆柱的侧面积、表面积。
4、培养合作意识和主动探求知识的学习品质,培养学生的创新精神和实践能力。
【教学难点】将展开图与圆柱体的各部分建立联系,并推导出圆柱侧面积的计算公式。
【教具准备】圆柱体纸盒、多媒体课件。
【学具准备】圆柱形纸盒。
【教学过程】。
1、前面我们已经认识了圆柱体,谁来说一下你对它有哪些了解?
2、不错,今天我们来继续研究圆柱,出示圆柱,观察大屏幕,从图中你了解到哪些数学信息?(圆柱的底面半径是4厘米,高是10厘米)。
3、现在我们如果来做一个这样的盒子,你会想到什么数学问题?
4、这节课我们就一起来研究“圆柱的表面积”这个问题。
1、初步感知。
总结:圆柱所有面面积的总和就是圆柱的表面积。
(2)动手摸一摸,感受表面积。圆柱表面积包含哪几个部分?(两个底面面积+侧面面积)。
(3)圆柱的表面积怎么求?(两个底面积+侧面积)。
(4)圆柱的底面积很容易求出,但侧面是一个曲面,它的面积怎么求?你有什么想法?想象一下,圆柱的侧面展开后是一个怎么样的图形?你有什么想法。
2、侧面积。
(1)小组合作:
请各个小组沿高把它的侧面展开,研究一下这个问题,验证你的猜想。
(2)学生汇报。
(3)教师总结演示。
(4)推导圆柱侧面积公式。
3、表面积。
(1)总结表面积公式。
圆柱的表面积=上底面积+下底面积+侧面积=两个底面的面积+侧面积。
(2)共同解决课前提出的问题:要制作这个盒子至少需要多少平分米的包装纸?
侧面积:2×3.14×10×30=1884(cm2),底面积:102×3.14=314(cm2),表面积:314×2+1884=2512(cm2)。
1、现在我们自己尝试来算一算这两个圆柱的表面积。
过渡语:同学们在生活中我们经常会遇到许多有关圆柱表面积的问题,请同学们看屏幕,要解决下列问题,需要求圆柱体哪几部分的面积。
5、如果一段圆柱形的木头,截成两截,它的表面积会有什么变化呢?
同学们我们来回顾一下这节课你有那些收获?你有什么想提醒大家注意的吗?
请记住同学们善意的提醒,这节课就上到这!
侧面积=底面周长×高。
圆柱表面积=s侧=c×h=2πrhs表=2πrh+2πr2。
底面积×2=2πr2。
六年级下册圆柱的表面积教学设计篇四
教学目标1、引导学生理解求“商标纸的面积大约是多少平方厘米”,就是求圆柱的侧面积。
2,2、放手让学生通过操作、观察、比较和推理,自主发现沿圆柱的高把它的侧面展开后的形状,以及圆柱侧面积的计算方法。
3,3、在学生列式算出商标纸的面积后,要适当总结圆柱侧面积的计算方法,以便于学生把具体的感性认识上升为一般的理性认识。
教学重难点重点:理解圆柱侧面积和表面积的意义,能正确计算圆柱的侧面积和表面积。
难点:掌握圆柱侧面积、底面积和表面积的计算方法,体会这些计算方法的联系和区别。
教学方法自主探索,合作交流。
课前准备每人准备一个圆柱形薯片盒,剪刀,教师准备好课件。
教学过程(含板书设计)。
一、感知圆柱形包装盒,激发学习兴趣。
1、师:在日常生活中,我们常常见到一些圆柱形包装盒,你看:(演示课件)。
2、提问:这些物品的包装盒都是什么形状的?
(课件:一个实物图,旁标注:商标纸的面积大约是多少平方厘米?(接头处忽略不计))。
提问:求商标纸的面积,就是求…….你想到了什么?
你们有什么好办法,能顺利求出圆柱的侧面积呢?
二、探索新知,体验解决问题的方法。
1、小组合作探究。
师:我们通过小组合作学习的方式,来研究圆柱侧面积的计算方法。
出示小组合作要求:指名读要求。
(1)沿着接缝把商标纸剪开,展开后看看是什么形状。
(2)测量相关数据求出圆柱的侧面积,也就是商标纸的面积。
(3)思考:怎样计算圆柱的侧面积?
2、巡视指导方法。
3、第一层次的交流:指明2组学生汇报交流。
师:这样剪就是沿圆柱的高剪开,发现侧面展开图是什么形状?
长方形的面积怎样计算。
板书:长方形的面积=长×宽。
怎样求圆柱的侧面积呢?
4、第二层次的交流:
4,出示:再次思考要求:长方形的长和宽与这个圆柱有怎样的关系?
课件演示(沿圆柱的高剪开后侧面展开是一个长方形课件演示:将商标纸展开后成长方形的动态)。
提问:圆柱与这个长方形的长、宽有什么关系呢?
指明回答,板书:长方形的面积=长×宽。
圆柱的侧面积圆柱底面周长圆柱的高。
6、你能解决关于圆柱形罐头的实际问题吗?
(1)出示例2,请人读题。
(2)提问:说说你是怎样想的?
(3)不用操作,你能直接求出商标纸的面积吗?
(4)生独立计算。指明1人扮演。
(5)师:要求商标纸的面积,你是怎样想的?
要求一个圆柱的侧面积通常需要知道那些条件?
7、练习1:出示p22练一练1。
求出它的侧面积,怎样求出圆柱的侧面积?
练习2:方叔叔用一张长10厘米,宽6厘米的长方形铁皮围成了一个圆柱形的模具。这个模具的侧面积是()平方厘米。
8、出示例3,
指明生回答。
(2)在方格纸上画出圆柱的表面展开图。
(3)观察所画的圆柱表面展开图,想一想:圆柱的表面展开图是由哪几个部分组成的?
师:圆柱的侧面积与两个底面积的和,叫做圆柱的表面积。(课件演示)。
板书:表面积。
(5)通过刚才的讨论,你能总结出圆柱表面积的计算方法吗?同桌交流,指名汇报。
9、出示p22练一练2。
你打算怎么求圆柱的表面积?
可以先求圆柱的侧面积,再求圆柱的两个底面的面积。最后相加。
生独立计算,展示部分学生作业。
三、综合练习,巩固计算方法。
师:在生活中,许多实际问题都可以转化成今天我们所学习的求圆柱侧面积和表面积的问题。
(1)仔细理解下面题目的意思,说说解决这些问题,就是要解决哪些数学问题。
1,出示:练习六题1题2。(只列式,不计算)。
提问:要求铝皮的面积就是求什么?羊皮呢?
要求做油桶的铁皮的面积就是求什么?
提问:通过刚才两道题的解答,你认为计算圆柱侧面积和圆柱底面积时,有什么区别?
强调:在计算侧面积时,需要知道圆柱的底面周长,而计算表面积时,不仅要求出底面周长,还要求出底面积。
(2)出示下图:
下图是一个圆柱侧面的展开图,高是厘米,底面周长是()厘米。
你能求出它的底面积是多少平方厘米吗?
6.28厘米。
3厘米。
小结:当已知底面周长,要求底面积时,先要求出底面半径或直径,才能求出底面积。
(3)比较下面两题:(选择一题完成)。
(想一想,要求做水桶大约需要多少平方厘米的铁皮,就是求什么?)。
(只列式,不计算)。
怎样理解轮宽的概念?演示压路机工作的状态。
四、总结提高,深化理解。
在解决实际问题时,关键是要能把生活实际问题转化成数学问题,并注意。
在解决实际问题中灵活运用表面积的计算方法,正确解题。
六年级下册圆柱的表面积教学设计篇五
一、在复习引入环节,我首先通过复习圆的周长和面积的计算,为下面的计算圆柱的侧面积和表面积打下基础;复习圆柱的特征为后面侧面积和表面积的公式推导做好铺垫。
二、在侧面积和表面积的计算环节中,我首先让学生看一看、摸一摸,自己观察、发现,形成圆柱表面积的表象。认识到圆柱的表面积等于圆柱的`侧面积和两个底面面积的和。然后,在突破侧面积的计算方法这个难点时,让学生自己展开圆柱体模型,观察到侧面展开是一个长方形。长方形的长就是圆柱的底面周长,长方形的宽就是圆柱的高,从而根据长方形的面积公式自然推导出了圆柱侧面积的计算公式,在这一环节中,培养了学生的观察、分析能力,同时也培养了学生的合作意识。
三、在练习题的设计中,遵循了从易到难的原则,在形式、难度、灵活性上都有体现。判断题有利于学生对知识的理解;动手测量并计算圆柱体实物表面积的题目,锻炼了学生对知识的实际应用能力,使学生感受到数学与现实生活的联系。
四、在教学方法上,充分利用了学生现有的学具和准备的圆柱体实物,让学生自己去动手、观察,推导出了圆柱的表面积和侧面积的计算公式。
在这节课的教学中,还存在着一些不足:
3、部分学生对生活问题中的圆柱表面积(不是三个面的)理解上有欠缺。
六年级下册圆柱的表面积教学设计篇六
教学目标:1、让学生经历“猜测--验证”的过程,自主发现平面图形按比例放大后面积的变化规律。并能利用发现的规律解决实际问题。
2、进一步体会比例的应用价值,提高学习数学的兴趣。
教学重点:1、引导学生通过观察、比较,自主发现“把平面图形按n︰1的比放大后,放大后的面积与放大前的面积比是n2︰1。并能利用发现的规律解决实际问题。
2、使学生进一步体验解决问题的乐趣,提高解决问题的策略水平。
教学难点:通过观察、比较,自主发现“把平面图形按n︰1的比放大后,放大后的面积与放大前的面积比是n2︰1。
设计理念:本节课首先让学生结合示意图认识到长方形的长和宽按比例放大后,面积也发生了变化。接着让学生经历“猜测--验证”的过程自主探索面积变化规律。当学生对变化的规律形成初步的感知后,引导学生把实验的对象扩展到正方形、三角形、圆,通过测量、计算、探索,验证此前初步感知的规律,由此让学生体验探索的乐趣和成功的喜悦。最后组织学生运用发现的规律解决实际问题。使学生感受到数学的价值在于应用,激发学习数学的热情。
教学步骤教师活动学生活动。
一、探索长方形面积比与边长比的关系。1、出示52页上的两个长方形。
指出:大长方形是小长方形按比例放大后得到的图形。
师板书:长:3︰1宽:3︰1。
3、想办法验证一下,看估计得对不对?
问:你是怎么验证的?你得到了什么结论?
4、如果大长方形与小长方形对应边的比是4︰1,那么面积比是几比几呢?
在书上量出它们的长和宽,写出对应边的比。
各自测量,写出比,然后交流。
学生估计大长方形与小长方形面积的比是几比几。
学生想办法验证。
学生交流验证的方法。
学生回答。
二、探索其它图形的面积与边长比的关系。
1、出示按比例放大的正方形、三角形与圆。
引导观察:估计一下,它们的对应边是按几比几的比放大的?
2、这几个图形放大后与放大前的面积相比,发生了怎样的变化?
(1)引导学生猜测。
(2)引导观察:观察表中的数据,你发现了什么规律?
在学生充分交流的基础上揭示规律:把平面图形按n︰1的比放大后,放大后的面积与放大前的面积比是n2︰1。
说明:如果把一个图形按1︰n的比缩小,缩小前后图形面积的变化规律是:
缩小前的面积与缩小后的面积的比是1:n2用尺在书上的相关的图形中测量一下,然后确认:
正方形:3︰1三角形:2︰1圆:4︰1。
量量、算算,将相关数据填入书上53页表格中。
交流测量和计算得到的数据。
学生讨论,交流。
学生发表自己的见解。
三、运用规律应用。
出示书中东港小学的校园平面图,请从中选择一幢建筑或一处设施,测量并算出它的实际占地面积。(1)测量有关图形的图上距离。
(2)计算相关图形的实际面积。
四、活动小结通过本课的活动,你有哪些收获?活动中你的表现如何?学生交流。
六年级下册圆柱的表面积教学设计篇七
教学目标:
1、让学生经历“猜测-验证”的过程,体验科学的思考方法,培养严谨的科学态度。
自主发现平面图形按比例放大后面积的变化规律,进一步体会比例的应用价值,提高学习数学的兴趣。
3、培养灵活解决问题的能力。
教学重点:解比例的意义和方法。
教学难点:在合作探究过程中能联系新旧知识解决问题。
教学准备:预习检测纸当堂达标纸。
教学过程:
预习检测。
自主探究图形按比例放大或缩小后面积的变化规律。
(1)、先量出书上两个长方形的长与宽,写出对应边的比。
(2)、先估计两个长方形的面积。再通过计算来验证自己的猜测。你发现了什么?
引导学生发现长方形的长与宽分别扩大和缩小一定的倍数后,面积的变化规律是长宽扩大(0或缩小)的倍数的平方。
(4)、一个长方形的长与宽分别扩大2倍后,面积会发生怎样的变化?
2、把经验进一步扩展。
列表来证明。
如果把正方形的边长扩大2倍,面积会有什么变化?把三角形的底和高呢?圆的半径呢?
引导学生对表中的数据进行观察、比较和交流,得出结论:把平面图形按n:1的比放大后,放大后的面积与放大前的面积的比应该是n的平方比1。
合作探究。
应用发现的规律解决实际问题。
观察53页平面图,小组合作探究,解决实际问题。
图中主要是圆形和长方形。你能用刚才发现的方法解决这些问题吗?
交流完成情况。
选择一些建筑物,说说它们的位置关系。
总结:解决这个问题的方法是先测量计算出某建筑或设施的相关图上距离,如长方形的长与宽,、圆的半径再计算出图上面积。然后运用发现的规律计算出该建筑物或设施的实际占地面积;也可以先根据图上距离求出相应的实际距离,再计算出实际面积。
当堂达标。
选择一处建筑或一处设施,确定适当的方法,进行测量和计算。
通过比较,确定比较合适的方法,全班推广。
六年级下册圆柱的表面积教学设计篇八
本节课是在初步认识圆柱的基础上,理解圆柱的侧面积和表面积的含义,掌握圆柱侧面积和表面积的计算方法,会正确计算圆柱的侧面积和表面积,能解决一些有关实际生活的问题。
根据教学内容的特点和我班学生的实际,本节课的教学我采用了直观演示和实际操作,讲解和尝试练习相结合的方法,使新课与练习有机地融为一体,做到讲与练,相结合,有效地培养了学生的空间观念和解决实际问题的能力。
1、把握重点,突破难点,合理利用教材。
本课教学重点是掌握圆柱侧面积和表面积的计算方法。对于圆柱体侧面面积计算公式的推导,我遵循主体性原则,让学生动手操作、观察、发现,促进知识的迁移,使学生轻松地理解掌握圆柱侧面面积的计算方法,较好地突破难点。
2、直观演示和实际操作相结合。
通过直观演示和实际操作,引导学生观察、思考和探索圆柱体表面积的计算方法,鼓励学生积极主动地获取新知,让学生经历知识形成的过程,同时培养了学生的空间观念。
3、讲解与练习相结合。
本节课,我改变了传统的先讲后练的教学模式,做到讲、练结合,贯穿教学的始终,使练习随着讲解由易到难,层层深入。在练习表面积的实际应用时,又很自然地进行了“进一法”的教学,使讲、练,真正做到了有机结合,学生学习的知识是有效的、实用的,同时也激发了学生学习数学和运用解决实际问题的兴趣,培养了学生的应用意识。
4、还要进一步加强学生解决问题能力的培养。
学生学习了圆柱侧面积和表面积的计算方法后,在做稍复杂一点的补充作业时,出错的同学较多,这说明学生灵活运用所学知识解决实际问题的能力还不够,还要进行有针对性的训练。

一键复制