在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。写范文的时候需要注意什么呢?有哪些格式需要注意呢?下面是小编为大家收集的优秀范文,供大家参考借鉴,希望可以帮助到有需要的朋友。
初中数学差补救篇一
等腰直角三角形的边角之间的关系:
(1)三角形三内角和等于180°;
(2)三角形的一个外角等于和它不相邻的两个内角之和;
(3)三角形的一外角大于任何一个和它不相邻的内角;
(4)三角形两边之和大于第三边,两边之差小于第三边;
(5)在同一个三角形内,大边对大角,大角对大边。
等腰直角三角形中的四条特殊的线段:角平分线,中线,高,中位线。
(1)三角形的角平分线的交点叫做三角形的内心,它是三角形内切圆的圆心,它到各边的距离相等。
(三角形的外接圆圆心,即外心,是三角形三边的垂直平分线的交点,它到三个顶点的距离相等)。
(2)三角形的.三条中线的交点叫三角形的重心,它到每个顶点的距离等于它到对边中点的距离的2倍。
(3)三角形的三条高的交点叫做三角形的垂心。
(4)三角形的中位线平行于第三边且等于第三边的二分之一。
(5)三角形的一条内角平分线与两条外角平分线交于一点,该点即为三角形的旁心。
注意:
①任意三角形的内心、重心都在三角形的内部。
②钝角三角形垂心、外心在三角形外部。
③直角三角形垂心、外心在三角形的边上。(直角三角形的垂心为直角顶点,外心为斜边中点。)
④锐角三角形垂心、外心在三角形内部。
⑤任意三角形的旁心一定在三角形的外部。
直角三角形的相关线段:
1、中线:顶点与对边中点的连线,平分三角形。
2、角平分线:平分三角形一内角的线段。
3、高线:三角形中一顶点向对边作的垂线。
初中数学差补救篇二
一、课前认真备课,吃透教材,做到因材施教。
进入五年级后学习的的空间概念加强了,动手实践的内容增多了,教师如何将生活中的一些现象挪入课堂,这是当今教师能力的体现。和四年级相比每一节课的课后练习量有所增加。数学活动课后也有一定量的练习,同时学生还要面对课外活动学习的压力。所以备课时不但备学生而且备教材备教法,根据教材内容及学生的实际,设计课的类型,拟定采用的教学方法,并对教学过程的程序及时间安排都作了详细的记录,认真写好教案。每一课都做到“有备而来”,每堂课都在课前做好充分的准备,在充分了解学生现状的基础上,不能存在任何死角。特别是接受能力较差的学生,在备课时先想到他们。如何设计课堂教学使他们能够听得懂、听的高兴。就可以保证全班学生都能获取新知。
这个班的学生基础不太好,后进生面较大的现状,在教学中认真钻研教材,把握好教材的重点和难点,根据教材内容以及学生的实际水平和特点,选择适当的教学方法,寓教于乐,尽可能使学生学得轻松、愉快。
二、增强上课技能,提高课堂学习效率。
提高教学质量,使讲解清晰化,条理化,准确化,条理化,准确化,情感化,生动化,做到线索清晰,层次分明,言简意赅,深入浅出。在课堂上特别注意调动学生的积极性,加强师生交流,充分体现学生的主体作用,让学生学得容易,学得轻松,学得愉快;注意精讲精练,精讲要针对每一节课的教学重点和难点,所采用的方式不一定是教师讲授。可以采用“小组合作”,“学生自主学习”等方式进行。精练指的是在课堂上老师讲得尽量少,选用的习题必须是符合学生的特点的。学生容易接受的、有趣的。用少题精题使全班学生动口动手动脑尽量多;达到举一反三、甚至达到举一反十的作用。这些精选题也可以在课后练习、也可以进行提高练习。此时的练习使学生的家庭作业量有所减少。即达到了减轻学生课业负担的目的。同时在每一堂课上都充分考虑每一个层次的学生学习需求和学习能力,让各个层次的学生都得到提高,达到对知识能准确的掌握和灵活的运用。
在教学过程中,我不仅注意学生知识的掌握情况,而且还十分注意学生学习能力、学习习惯的培养,除了要求他们“学会”,更重要的是要让他们自己“会学”。课堂上,对于那些脑子灵反应快,好胜心强,爱动、贪玩、粗心,懂一点就听不进去,注意力很难集中的学生,上课时就对他们多提问,让每一个学生都能积极主动地参与教学活动。总的来看,学生学习的兴趣和积极性大大提高了,课堂气氛变活跃了,学生的学习方法也得到了改善。
三、精心设计作业,提高学生作业的质量。
1、布置作业做到精练。有针对性,有层次性。特别对后进生课本上的课后练习不一定要求学生全都做完,布置的家庭作业要尽量避免大量的重复。也可以设计为“基本题”,“技能题”“能力题”的模式。力求每一次练习都起到最大的效果。同时对学生的作业批改及时、认真,分析并记录学生的作业情况,将他们在作业过程出现的问题作出分类总结,进行透切的评讲,并针对有关情况及时改进教学方法,做到有的放矢。
2、认真批改作业,从作业中发现问题,及时补漏学生所做的每一次作业,我总会认真批改,仔细分析,及时发现学生学习中的薄弱环节,进行补漏。每次作业我都坚持做到“学生做—老师改—老师讲评—学生订正—老师再改”。
四、分层次对学困生进行个别辅导。
做好课后辅导工作,注意分层教学。在课后,为不同层次的学生进行相应的辅导,以满足不同层次的学生的需求,避免了一刀切的弊端,同时加大了后进生的辅导力度。对后进生的辅导,并不限于学习知识性的辅导,更重要的是学习思想的辅导,要提高后进生的成绩,首先要解决他们心结,让他们意识到学习的重要性和必要性,使之对学习萌发兴趣。要通过各种途径激发他们的求知欲和上进心,让他们意识到学习并不是一项任务,也不是一件痛苦的事情。而是充满乐趣的。从而自觉的把身心投放到学习中去。这样,后进生的转化,就由原来的简单粗暴、强制学习转化到自觉的求知上来。使学习成为他们自我意识力度一部分。在此基础上,再教给他们学习的方法,提高他们的技能。通过课堂教学、检测、作业反馈等,发现问题,充分利用空余时间为他们开“小灶”,作业错了,坚持面批面改,促进他们自我奋进。一学期下来他们成绩有明显提高,而且在学习态度、学习习惯方面有了明显好转。
五、积极参加教研活动,不断提高自己的业务水平。
在教学上,有疑必问。教学方法、教学设计,在各个章节的学习上都积极征求其他老师的意见,学习他们的方法,同时,多听老师的课,做到边听边讲,学习别人的优点,克服自己的不足,并常常邀请其他老师来听课,征求他们的意见,改进工作。
十分注意自身素质和业务水平的提高,积极参加组内的教研活动,努力让自己在活动中得到锻炼、提高。
本学期工作虽然取得了很多成绩,但是做得也有不足之处,对优生的拔尖工作做得不够,另外与学生家长的联络不够,缺乏教学合力。在今后的教学中我会不断反思,不断创新,使不同的学生得到不同的发展,一份耕耘,一份收获,教学工作苦乐相伴,我将扬长避短,一如既往,再接再励,把教学工作做得更好。培养学生的集体主义观念,积极推进素质教育,让学生的各种素质都得到有效的发展和培养。
初中数学差补救篇三
1、学好初中数学课前要预习
初中生想要学好数学,那么就要利用课前的时间将课上老师要讲的内容预习一下。初中数学课前的预习是要明白老师在课上大致所讲的内容,这样有利于和方便初中生整理知识结构。
初中生课前预习数学还能够知道自己有哪些不明白的知识点,这样在课上就会集中注意力去听,不会出现溜号和走神的情况。同时课前预习还可以将知识点形成体系,可以帮助初中生建立完整的知识结构。
2、学习初中数学课上是关键
初中生想要学好学生,在课上就是一个字:跟。上初中数学课时跟住老师,老师讲到哪里一定要跟上,仔细看老师的板书,随时知道老师讲的是哪里,涉及到的知识点是什么。有的初中生喜欢记笔记,在这里提醒大家,初中数学课上的时候尽量不要记笔记。
你的主要目的是跟着老师,而不是一味的记笔记,即使有不会的地方也要快速简短的记下来,可以在课后完善。跟上老师的思维是最重要的,这就意味着你明白了老师的分析和解题过程。
3、课后可以适当做一些初中数学基础题
在每学完一课后,初中生可以在课后做一些初中数学的基础题型,在做这样的题时,建议大家是,不要出现错误的情况,做完题后要学会思考和整理。当你的初中数学基础题没问题的时候,就可以做一些有点难度的提升题了,如果做不出来可以根据解析看题。
但是记住千万不要大量的做这类题,初中生偶尔做一次有难度的题还是对数学的学习有帮助的,但是如果将重点放在这上面,没有什么好处。同时要学会整理,将自己错题归纳并总结,
数学是由简单明了的事项一步一步地发展而来,所以,只要学习数学的人老老实实地、一步一步地去理解,并同时记住其要点,以备以后之需用,就一定能理解其全部内容.就是说,若理解了第一步,就必然能理解第二步,理解了第一步、第二步,就必然能理解第三步.这好比梯子的阶级,在登梯子时,一级一级地往上登,无论多小的人,只要他的腿长足以跨过一级阶梯,就一定能从第一级登上第二级,从第二级登上第三级、第四级,…….这时,只不过是反复地做同一件事,故不管谁都应该会做.
初中数学差补救篇四
不等式及其解集
1、不等式:用不等号表示大小关系的式子。
2、不等式的解:使不等式成立的未知数的值,叫不等式的解。
3、不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。
不等式的性质:
性质1:如果ab,bc,那么ac(不等式的传递性)。
性质3:不等式的两边同乘(除以)同一个正数,不等号的方向不变。不等式的两边同乘(除以)同一个负数,不等号的方向改变。
性质4:如果ab,cd,那么a+cb+d(不等式的加法法则)。
性质5:如果ab0,cd0,那么acbd(可乘性)。
二、一元一次不等式
1、一元一次不等式:含有一个未知数,未知数的次数是1的不等式。
2、不等式的解法:
步骤:去分母,去括号,移项,合并同类项,系数化为一;
注意:去分母与系数化为一要特别小心,因为要在不等式两端同时乘或除以某一个数,要考虑不等号的方向是否发生改变的问题。
三、一元一次不等式组
1、一元一次不等式组:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成了一个一元一次不等式组。
2、不等式组的解:几个不等式的解集的公共部分,叫做由它们组成的不等式组的解集。解不等式组就是求它的解集。
3、解不等式组:先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式的`解集。
解一元一次不等式组的一般方法:
以两条不等式组成的不等式组为例:
①若两个未知数的解集在数轴上表示同向左,就取在左边的未知数的解集为不等式组的解集,此乃“同小取小”。
②若两个未知数的解集在数轴上表示同向右,就取在右边的未知数的解集为不等式组的解集,此乃“同大取大”。
④若两个未知数的解集在数轴上向背,那么不等式组的解集就是空集,不等式组无解。此乃“向背取空”不等式组的解集的确定方法(ab)。

一键复制