作为一名教师,通常需要准备好一份教案,编写教案助于积累教学经验,不断提高教学质量。怎样写教案才更能起到其作用呢?教案应该怎么制定呢?以下是小编为大家收集的教案范文,仅供参考,大家一起来看看吧。
圆的认识教学教案片段导入圆的认识教学内容篇一
【教学目标】
2,进一步理解轴对称图形的特征,体会圆的特征.
3,在折纸找圆心,验证圆是轴对称图形等活动中,发展空间观念.
【教学重,难点】
1,圆的特征.
2,同一个圆里半径与直径的关系.
【教具,学具准备】
1,三角尺,直尺,圆规.
2,教学课件.
【教学设计】
教 学 过 程
教 学 过 程 说 明
一,实践操作.
1,折一折.
每人准备一个圆,请同学们想办法找出圆心.
2,小组活动:剪几个圆,折一折,你发现了什么
小组交流.
3,汇报:沿着任意一条直径对折,都能完全重合.
4,小结:圆是轴对称图形,直径所在的直线是圆的对称轴.
圆有无数条对称轴.
二,尝试练习.
1,说一说学过的图形中哪些是轴对称图形 分别有几条对称轴
正方形:4条
长方形:2条
等腰三角形:1条
等边三角形:3条
圆:无数条
三,巩固练习.
1,练一练第一题.
学生在书上填写,集体交流.
2,练一练第二题.
学生在书上填写,集体交流.
3,练一练第三题.
学生画出对称轴,集体交流.
4,练一练第四题.
学生实际测量,集体交流.
5,练一练第五题.
学生在书上填写,集体交流.
引导学生整理已学过的轴对称图形.
通过练习,进一步巩固所学知识.
四,全课小结.
【教学反思】
存在问题:对于画对称轴,学生掌握得层次不齐.需要进一步练习巩固!
圆的认识教学教案片段导入圆的认识教学内容篇二
人教版六年级上册第四单元第一课时。
教学目标:
1、知识目标:使学生认识圆,知道圆的各部分名称。掌握圆的特征,理解直径与半径的关系。初步学会用圆规画圆。
2、技能目标:让学生从生活中认识圆,借助动手操作活动,发现规律,培养学生的观察、分析、抽象、概括等思维能力和初步的空间观念。
3、情感目标:通过操作、研讨,培养学生独立探索能力和创新、合作的意识。
教学重点:
掌握圆的基本特征,理解直径与半径的关系。
学具准备:
圆的实物、剪好的圆片、圆规、直尺
教具准备:
细线、图钉、剪好的圆片、三角板
教学过程:
一、悬念产生好奇,好奇带入新课
(一)设置悬念
师:同学们,你们知道吗?(课件展示、图文并茂)
1、车轮为什么都是圆形的?
2、篮球场的中间为什么要设计成圆形呢?
3、枪口、炮口为什么都是圆形的?
(当学生回答是“圆”时,教师板书课题)
师:当同学们通过这堂课的学习,对圆有一定认识后,你们再回答这三个问题,相信你们的答案会更完整、更圆满。(在黑板的一侧板书:圆满)
[设计意图]不拘泥于教材内容,从学生年龄和心理特征出发,用心扑捉圆在生活中、自然中的原型,巧妙地创设了“三个问题”情境,引发学生的好奇心,从而使他们带着一种“打破沙锅问到底”的向往与追求的意向,以的状态进入学习角色。同时,在“暂时还不回答”的关子下,把“三个问题”集中在“圆”上,旗帜鲜明地拉开了这节课的序幕,这一导课不仅意味深长,激发了学生的学习兴趣,并开始不知不觉地渗透了“圆的文化特征”意识,可谓是一举两得。
二、在猜想中探究,在探究中感悟
(一)生活中的圆
师:生活中你们见到哪些物体是圆形的?
(学生回答时,教师可要求学生将已准备的实物举起展示)
(二)运动中的圆
师:你们都是生活中的有心人。那么下面的情况可能会出现怎样的现象呢? (课件展示)
1、一粒石子抛入平静的水面时
2、电风扇的扇叶转动时
(三)探究圆的形成
一根细线,用图钉固定一端,另一端绑着一支粉笔旋转一周。
2、师:刚才老师是怎样操作画出一个圆的?
学生交流
师:(把线拉直)这样运动时动点就与固定的这点距离(保持不变)。粉笔在这个运动轨道上旋转一周就得到了一个(圆)。
3、师:如果把细线放长,粉笔继续旋转一圈,发生了什么变化?看来这细线的长短可以确定(所画圆的大小)
(孕伏“定长”意识)
[设计意图]以上三个教学环节,以“感知—想象—发现”为线索,逐步推进,串成学生探究“圆的形成”这一过程。感知是认识世界的开始,是思维、想象等一切心理活动的基础。通过“生活中的哪些物体是圆形的”举例,既激活了学生已有的经验,同时为过度到想象提供了丰富的表象,这样想象力也就引向了更成熟的高度。最后用他们的想象力猜测、感悟“圆的形成”两大核心要素圆心和半径,从而为后面的“圆”的本质认识打下了扎实的基础。
(四)从画圆中认识圆
2、学生尝试画圆(教师巡视,收集学生不圆的和圆的作品。)
3、投影展示学生作品、学生互相交流
(投影展示“不圆”的作品)
师:请你评价下这幅作品?
你想提点什么建议?
师顺着学生的阐述引出“定点”、“定长”。
(让学生自己“由误到悟”,在交流、切磋中对“画圆时要注意什么”印象深刻)
(投影展示“圆”的作品)
师:请欣赏这幅作品是怎样被圆规创造出来的?
两个学生介绍如何画圆,师追问“画的圆为什么有大有小?”
随着学生反馈画圆的三个步骤,教师同时用课件演示圆规画圆。
4、板书: 定点、定长、旋转一周。
定点确定圆的位置,定长确定圆的大小
5、如何在篮球场上画圆?
师:我们会在纸上画圆了,其实生活中还有很多地方需要画圆。例如:要在篮球场上画一个很大很大的圆,你准备怎样做?与小组里的同学说一说你的想法。
学生反馈、相互交流补充。
[设计意图] “画圆”的环节,不仅仅只是学生掌握画圆的技巧、学会用圆规画圆的过程,更重要的是继前三个环节后,进一步提升学生对圆的初步认识,由表象逐步向抽象转化的过程。在这里教师还十分关注学生情绪,尊重学生意愿,在学生跃跃欲试时,采用先让学生尝试画圆,并利用可能“出现的问题”,揭示圆的画法、“圆的位置”和“圆的大小”等深层次问题,这是数学课堂教学的一种自然本色。数学来源于生活、用于生活,画圆后教师提出了一个开放性的问题:如何在篮球场上画圆?让学生从“纸上谈兵”,过渡到解决现实情境问题,与“探究圆的形成”有个呼应。
(五)解读圆的概念
生1:原理都一样
生2:都是按三步骤来画的
师小结:画圆时都有两个点,一个点是固定的,一个点是运动的,两个点之间的距离保持不变,,动点在这个运动轨道上旋转一周,得到的图形就是(圆)。 所以,圆就是由无数个点连成的一条什么线?(曲线、封闭的曲线)
(课件演示)
(六)认识圆的各部分名称及其特征
1、师:有关圆你还了解哪些知识?
教师将“圆心o”“ 半径r”“直径d”写在3张卡片上,请学生一一贴在黑板上圆的有关之处。
师:谁能在黑板上的圆中将它们画出来并贴好。(3个学生依次上台)
2、直接揭示圆心的概念
3、半径
师:像这样的半径,你会画吗?
学生动手画半径
师:你是怎样画的?
(注意引导学生阐述“从哪里出发画到哪里”)
师:什么样的线段叫半径? 揭示半径的概念。
(板:半径r)
生:圆上有无数个点。
师:那它们的长度都有怎样的关系呢?谁来说说你的想法?
4、直径
师:直径你会画吗?在你的圆片上画出直径。
师:你是怎样画的? 那什么样的线段叫直径呢?
你们和数学家们总结差不多呢!翻到56页,全班齐读。
(板:直径d)
师:在同一个圆里,直径有多少条?
师:那它们的长度都有怎样的关系呢?谁来说说你的想法?
(板书:无数条 长度都相等)
5、师:其实早在2500多年前,我国伟大的教育家、科学家就曾提出有关圆的概述 (课件出示)
师:一中的“中”指的是?那“同长”的意思是?
6、判断:以下圆内哪些线段是半径,哪些线段是直径?
7、半径与直径的关系
①师:你会怎样去验证你的想法?
在小组里商量一下,再派代表反馈。
②制造冲突(展示学生事先剪的一大一小的两个圆)
疑问:在这两个圆中,半径、直径二者还存在以上的关系吗?
(板书:在同一个圆里)
[设计意图]探究圆的特征是本节课的重点,又是难点。怎么有个突破,使学生能轻松地接受,本环节是采用“画”、“量”、“折”,让学生动手操作、自主探究的方法。“画”是发现,是印证;“量”是验证、确认。这一为学生搭建的自主探究学习的平台,既能使学生学得生动活泼,积极参与,而且将对所学的知识理解得更深刻,记忆得更牢固,也正好印证了“儿童的智慧出在他们手尖上”这句话。
三、运用知识,拓展思维
(一)小裁判
1、两端都在圆上的线段叫做直径。( )
2、半径2厘米的圆比半径1厘米的圆大。( )
3、圆的直径都相等。 ( )
4、在同一个圆里,圆心到圆上任意一点的距离都相等。 ( )
(二)你能帮忙找到这个圆的圆心吗?
[设计意图]由于本节课是属概念教学课,作为反馈练习,仅设计了两大题。通过这两大题训练以检查学生对概念理解的情况,并解决学生容易混淆或出错的问题。
四、解释自然中圆,欣赏人文中圆
(一)解释自然中圆
1、分组讨论:车轮为什么都是圆形的?
2、小组派代表汇报(教师根据学生的汇报,利用课件演示下面两个主要因素)
①平稳(因为车轴在车轮圆心上,同圆半径都相等,确定了车与地面距离不变,所以平稳)
②车速快(车轮接触地面只是一个点,摩擦力小,车速就快了。)
[设计意图]这是一道引导学生用所学知识解决实际问题的训练题,以小组合作、同学互助,共同讨论为主要解题形式,以帮助学生综合运用知识、提高技能,培养学生不断探索、不断发现的精神,增强互助合作、敢于创新为目标。同时,本练习起到了“前后呼应”之教学艺术功能,成了学生善于动脑、勇于解题的动力,使学生在成功解答后有一种满足感,以进一步激发他们的求知欲。
(二)欣赏人文中圆
2、课件演示:(配乐)
圆,在我们身上遗留下的印痕是多么深刻而广远。圆,是和谐的象征,是幸福的感受!
[设计意图]教学本质是一种文化。我们有理由向学生传递教学本身的内涵和鲜活的文化背景,引领他们通过学习感受数学文化的博大精深,努力使数学所具有的文化特征浸润于学生心间,成为学生数学成长的不竭动力源泉,让数学课堂摆脱原有习惯思维与阴影,真正美丽起来。为此,设计“欣赏人文中的圆”这一环节,就是引发学生领略“圆”的神奇魅力及其背后所蕴含的人文的、文化的特征,拓宽学生对“圆”的认识视域。同时,让学生真切地感受中国人对“圆”的特殊情感,激发他们爱祖国、爱学习的热情,为进一步学好“圆”打下坚实的基础。
圆的认识教学教案片段导入圆的认识教学内容篇三
1,知识与能力:使学生认识圆,会用圆规画圆,掌握圆的特征,理解同圆或等圆中半径与直径的关系。
2,过程与方法:培养学生的探索能力。
3,情感,态度,价值观:渗透数学来源于生活又应用于生活的道理。
会用圆规画圆,掌握圆的特征,理解同圆或等圆中半径与直径的关系。
理解同圆或等圆中半径和直径的关系。
课件,白纸,圆规。
1,示四驱车,问这是什么?
追问:为什么车轮都是圆的,如果不是圆的会怎样?
3,导入,板题:圆的认识
4,你想了解圆的哪些知识?(学生自由回答)
1,任意画圆,体会什么是圆。
(1)画一个圆
(2)展示,比较哪个圆,哪个不圆?问:怎么就画圆了?
(3)请学生说说你是怎样用圆规画圆的?
2.用圆规画圆,理解圆的构成及圆心。
(1)让学生在白纸的四个角上分别画一个圆,边画边想:圆是由什么组成的?(圆周,圆心)
(3)画圆时固定的一点谁知道叫什么?(板书:圆心)
(4)标出你所画的圆的圆心。
(5)圆心的重要性:你能说说你是怎样确定圆的位置的?
3,通过画圆感悟什么是半径及特征。
(2)在圆上表示出圆规两交叉开的长度。
(3)师:这条线段也有名称,你能试着给它起个名字吗?(板:半径)
(5)汇报追问:你怎么知道半径长度都相等的?
(6)判断,哪条线段是半径?
(7)讨论:什么叫半径?(汇报)
(8)再画一个比刚才小一点的圆,说说你认为圆的大小和什么有关?
4,通过画圆感悟什么是直径及特征。
(1)课件演示:问:看这两条半径怎样了?
(2)你知道这条线段叫什么吗?(板:直径)
(3)画一个圆,并画出它的直径,边画边想:半径和直径有什么区别?
(4)判断,哪条线段是直径?
(5)说说什么叫直径?
(6)观察直径有什么特征?
5,画一个圆,并画出一条半径和一条直径。
观察讨论:半径和直径有什么关系?(汇报)
1,说说为什么车轮是圆的?
2,马路上的井盖为什么做成圆的?
圆的认识教学教案片段导入圆的认识教学内容篇四
九年义务教育六年制小学数学[人教版]第十一册《圆的认识》
二、教学目标 ;
1、使学生认识圆,掌握圆的特征;了解圆的各部分名称。
2、会用字母表示圆心、半径、直径;理解并掌握在同圆(或等圆)中直径与半径的关系。
3、能正确熟练地掌握用圆规画圆的操作步骤。
4、培养学生动手操作、主动探究、自主发现、交流合作的能力。
三、教学流程;
1、导入 新课
(1)学生活动(边玩边观察)。
①球、球相碰玩具表演。②线系小球旋转玩具表演。
(2)师生对话(学生可相互讨论后回答)。
教师:日常生活中或周围的物体上哪里有圆?
学生:在钟面、圆桌、人民币硬币上……都有圆。
教师:请同学们用手摸一摸,体会一下有什么感觉?
学生用眼看一看、用手摸一摸,感觉:……闭封的、弯曲的。
学生:以前我们学过的平面图形如长方形、正方形、三角形、平行四边形和梯形的共同特征,都是由线段围成的直线图形。而我们现在看到的(指圆)这种图形是由曲线围成的图形。
教师(鼓励表扬学生):对,这个图形就是圆,你能说说什么是圆吗?
学生讨论后回答:圆是平面上的一种曲线图形。(这时,教师请同学们把眼睛闭上,在脑子里想圆的形状,睁开眼睛再看一看,再闭上眼睛想一想,能否记住它。)
2、探索新知。
(1)探究——圆心
① 徒手画圆。
②用工具画圆。
③找圆心。
教师引导学生归纳小结:圆中心的一点叫做圆心,圆心用字母“o”表示。(学生在圆形纸片上点出圆心,标出字母。)
④游戏趣味题。
在操场上,体育老师在地上画了一个大圆,给同学们做游戏。老师说,不管你站在什么位置,都会派上用场。你喜欢站在什么位置呢?请你点出来。
(2)探究——圆的直径、半径及其关系。
教师:你还想知道什么?
学生:还想知道圆的直径、半径,直径与半径之间有什么关系?……
①分组探究,合作学习。
教师提出学习活动要求:先独立进行,再分组交流。通过动手“折、量、画、数、比(估)、看、议”等,总之随你用什么方法都可以,探索圆的直径、半径及其关系。(围绕“学习卡”上的有关内容进行。)
分组汇报,全班交流。(填写学习卡)
学习卡
名称 意 义 用字母表示 在同圆( )里
条数 长度 直径与半径的关系
直径
半径
②重点请学生说明你是怎样发现的,展示发现的过程,让同学们评价。
③操作检验,内化提升。
a.考考你的判断力。
b.对答游戏(每两个学生一组):你说直径长度,我答半径长度;你说半径长度,我答直径长度。
c.边体验,边说理:为什么车轮都要做成圆的,车轴应安装在哪里?(教师提供各种车轮形状和安装位置不一样的自行车玩具,让学生边操作边体验,进而明理。)
d.合作操作探索。
(3)自我习作——用圆规画圆。
①学生自学:用圆规画圆的方法和步骤。(课本第87页)
②学生操作:用圆规画圆。(自我体会,怎样才能画对、画好。)
④操作表演,全班共赏。
a.按要求画圆。
a.半径2厘米 b.半径2.5厘米 c.直径4厘米 (比较a、c,你发现了什么?)
b.按要求画圆,并观察你发现了什么?(教师请学生画3个同心圆、3个大小不等的非同心圆。引导学生观察、讨论、比较并归纳:圆心决定圆的位置;半径决定圆的大小。)
c.体育老师在操场上的圆怎样画?(学生讨论,全班交流。)
3、课堂小结。
4、创新思维训练游戏。
教师:一个圆很美,大小不同的圆在一起组成美丽的图案更美。请大家设计由圆(或圆和其它平面图形)组成的图案,并写出创意,带到学校与同学交流。
四、课后反思。
新课程倡导学生主动参与、乐于探究、勤于动手的学习方式,培养学生收集和处理信息的能力、获取新知识的能力、分析和解决问题的能力,以及交流与合作的能力。本节课教师通过创设宽松、愉悦 、民主、和谐的课堂教学氛围,引导学生积极主动参与学习活动。如通过“游戏活动”,让学生在“玩”中学习。如“游戏趣味题”中“教师的评说”,能唤起学生学习的热情。如“自我习作、操作表演、大家共赏”,享受成功的愉悦,可激发学生探知的欲望。如让学生剪、折、画、量、议、找……多种感官参与活动,可培养学生的动手、实践能力,学会探索的方法。如通过学生评价教师、学生,师生平等相待,可解放学生的脑、手、眼,让学生大胆地想、放开去说、随心地做,有利于培养学生的创新精神和探究能力。教学中师生互动、生生互动、民主平等、开放自由、心心相映、情感交融……课堂充满了生命活力,这样教学有力地促进了学生学习方式的改变。置身于这样的学习情境之中,真正达到了“让学生享受学习”的意境。
圆的认识教学教案片段导入圆的认识教学内容篇五
:1.使学生了解圆是一种曲线图形。
2.使学生理解和掌握圆的各部分名称及圆的特征。
3.会用圆规画园。
4.培养学生的观察比较、分析推理,抽象概括等能力。
:圆的各部分名称及圆的特征。
:圆的特征。
:多媒体课件一套、圆规等。
:圆形纸片、圆规、直尺等。
1.复习。
(课件显示由平面图形构成的自行车示意图,根据学生的回答,同步闪亮 )
2.设疑。
你们知道自行车架为什么要做成三角形?
(根据学生回答:三角形具有稳定性,课件闪亮自行车三角形的框架部分。)
而自行车的轮胎为什么要做成圆形的呢?
(课件闪动自行车的轮胎后圆跳出,师在黑板上贴上圆形纸片,然后学生试回答)
3.揭题。
大家现在知道的只是其中的一些表面原因,其实这里面具有一定的科学知识,你们想知道吗?学完了这节课,我们就会知道的。(板书课题)
4.量标。
同学们,看到课题你想知道些什么呢?
(根据生答,师概括板书:图形、名称、特征、画圆)
(一)直观比较、了解概念。(圆)
圆跟我们已学过的平面图形有什么不一样呢?
(课件出示,先闪动围成三角形和四边形的线段,再将围成圆的曲线用红线走了一圈。根据学生的回答,师板书:圆是曲线图形)
你能举出日常生活中哪些物体上有圆吗?(生举例)
(二)操作引路,感知概念(名称、特征)
1.折圆。
请同学们拿出你们课前准备好的圆形纸片,象老师这样对折。打开,再换个方向对折、再打开,反复折几次,你可以发现什么?(有许多痕交于中间一点)
2.量折痕。
再请同学们用直尺量一量刚才折的每一条痕的长度,你又发现了什么?(折痕长度相等)
3.量点到圆上距离。
最后请同学们再用直尺量一量,中间这个点到圆任意一点的距离,你还可以发现什么?(距离也都相等)
(三)自学交流,理解名称。
1.自学课本,初知名称。
同学们通过刚才动手发现圆里的知识还真不少,数学家们把这些知识都规定为不同的名称,你们想知道吗?请同学们自学课本的第4-9小节。
2.交流消化,理解名称。
(1)圆里各部分的名称有哪些?
(根据学生的回答师板书:圆心、直径、半径)
(2)什么叫圆心?圆心就是我们刚才折圆时所发现的什么?
(3)数学家又是如何规定圆的直径的呢?
(随生答,媒体同步动画直径的过程,先后出示直径d及直径概念)
那么,直径就是我们刚才折圆时的什么?(折痕)
(4)什么叫半径?圆上任意一点是什么意思?(随生答,课件闪烁圆周上的许多点再动画出半径。)
半径就是我们在量圆时所发现的什么?
(5)(课件显示出圆的圆心、直径、半径的整体图及概念,学生齐读概念一遍)
3.练习。下面哪些是圆的半径或直径?为什么?
(四)猜想验证,概括特征。
1.分组讨论,进行猜想。
同学们,你能根据我们刚才折圆、量圆时所发现的,以及我们已学习的什么叫直径、半径来想一想、猜一猜,圆可能会有哪些特征呢?(学生分小组讨论)
2.交流讨论,提出猜想。
请各小组把讨论情况在全班交流一下。
(根据交流情况,师板书猜想内容)
3.各自验证,全班交流。
同学们真爱动脑筋,猜想了圆有这么多的特征。但是你们的猜想都对吗?你自己能不能想一个办法来验证一下,试试看。
(全班学生各自想法验证:有的折圆,有的量折痕,有的在圆中画直径、半径,有的量直径、半径,有的列表记录量的数据,有的嘴里在不停地唠叨着概念……)
请同学们把你验证的方法和得出的结果告诉大家。
4.媒体演示,加深理解。
(多媒体将学生验证的圆的特征运用了旋转、重合等声像并茂的手段,进行了动态演示)
5.学生概括,总结特征。
谁能把圆的特征用自己的语言来归纳概括一下。
(随生答,师板书:所有直径都相等,所有半径都相等,d=2,t=d/2)
这就是我们验证出来的`圆的特征,同学们同意吗?
(异口同声:同意。一生提反对意见:这些特征必须在同一个圆里才能成立。)
哎呀,你真聪明,把大家容易疏忽的问题给提出来了,真了不起。(师边说边板书:在同一个圆里)
6.对照验证,完善猜想。那么,你们的猜想有问题吗?(生:有,必须强调在同一个圆里)其实,你们刚才的猜想与验证,都是在自己手中同一个圆里进行折圆,量圆的,那么你们猜想对所说的圆里,就是指自己手中的同一个圆里。(师在猜想内容的"圆里"前补上"同一个")
这样,你们的猜想内容与验证结果意思就怎么样?
(随生答,师在"猜想"与"验证"之间连线同时板书:正确)
7.练习,填空。
(五)自我实践,学会画圆。
1.自学画法,实践画圆。
(学生结合课本108页圆的画法,边看边学会用圆规画圆)
2.学生自己介绍画圆步骤。
(随生介绍,师分步板书:定距、定点、旋转)
怎样定距?(学生边介绍边演示)这个圆规两脚之间的距离就是什么?(生:圆的半径)
在画圆时,你发现固定的一点与旋转一周各是圆的什么?
3.(师揭下贴在黑板上的圆形纸片,在贴纸片的地方示范画圆,小结画圆步骤)
1.填空。
(1)圆是平面上的一种( )。
(2)左图圆内固定的一点o是这个圆的( );线段ob是这个圆的( ),用字母( )表示;线段ac叫做圆的( ),用字母( )表示。
(3)在同一个圆里,直径与半径的比是( )。
(4)把一个圆规的两脚张开4厘米,画一个圆,它的直径是( )。
2.判断。
(1)两端都在圆上的线段叫做直径。( )
(2)圆里有无数条半径,无数条直径。( )
(3)所有的半径都相等,所有的直径都相等。( )
(4)半径决定着圆的大小,圆心决定着圆的位置。( )
(5)画直径5厘米的圆,圆规两脚间的距离是2.5厘米。( )
(6)直径6厘米的圆比半径4厘米的圆大。( )
3.操作。
学会量没有圆心的圆的直径。(课本练习二十五第1题)
(多媒体放完车轮分别是正方形、椭圆形、圆形的行进动画后,给学生直观给予提示,学生各抒己见,直对中心。)
2.学了"圆的认识"这节课,你还想知道些什么?
(生甲:圆也有周长和面积吗?生乙:怎样在操场上画一个很大的圆?……)
圆的周长和面积以后会学到的。谁见过怎样在操场上画一个很大的圆?(学生互相释疑)
这节课你自己运用了哪些学习方法,学到了哪些知识?
1.课堂作业:练习二十五第3.4题。
2.课后实践:量自行车轮胎外直径。
圆的认识教学教案片段导入圆的认识教学内容篇六
教材第5~6页的内容。
1、通过折纸活动,探究并发现圆是轴对称图形,体会圆的对称性,并进一步理解同一个圆里半径和直径的关系。
2、整理已学过的轴对称图形,进一步理解轴对称图形的特征。
3、在活动过程中发展学生的空间观念。
进一步理解同一个圆的半径和直径的关系,并体会圆的对称性。
在折纸过程中体会圆的特征。
教学课件、学生课前剪的圆、长方形等纸片。
学生活动
(二次备课)
一、情境导入
师:阳阳利用杯盖画了一个圆,并剪了下来,这个圆的圆心在哪里呢?他想快速找出来,你有什么办法吗?要想解决这个问题,我们还是要看看圆还有哪些特点。
二、预习反馈
点名让学生汇报预习情况。(重点让学生说说通过预习本节课要学习的内容,学到了哪些知识,还有哪些不明白的地方,有什么问题)
三、探索新知
1、动手操作,体会圆是轴对称图形。
生:沿任意一条直径对折,对折的两部分都能完全重合,可知圆是轴对称图形,对称轴是直径所在的直线,而且圆有无数条对称轴。(可能学生说对称轴时容易说成:直径是圆的对称轴。教师应引导学生知道对称轴是直线,而直径只是一条线段)
教师和学生回顾圆的半径、直径知识,找到所折圆的直径和半径,让学生通过折纸进一步理解:同一圆的半径都相等,直径都相等,直径是半径的2倍。
2、总结学过的图形中哪些是轴对称图形?有几条对称轴?
组织学生利用课前准备的长方形、正方形等纸片折一折,将结果填到教材第5页表格中。然后让学生汇报。
(1)正方形是轴对称图形,有4条对称轴;
(2)长方形是轴对称图形,有2条对称轴;
(5)教师利用平行四边形纸片折叠演示强调:虽然平行四边形被对角线分成了2个三角形,它们的形状、大小都相同,但它们不能完全重合,所以一般平行四边形不是轴对称图形。
3、引导学生进行折纸活动,找到圆心。
组织学生用“对折再对折”的方法找到圆心,并在小组内交流这样做的想法。
通过学习,学生能够说出:通过对称就能找到直径,而圆心在直径上,所以找到两条直径的交点就是圆心。
4、课件出示组合图形(教材第5页下面图形)。
让学生和同伴交流后找出各图的对称轴。
后面图形的对称轴较多,可能有的学生找不全,教师可引导学生:
因为圆中任意一条直径所在的直线都是它的对称轴,所以可以先找每个图形中多边形的对称轴,如果它正好过圆心,那么它也就是整个图形的对称轴。
四、巩固练习
1、完成教材第6页“练一练”第1题。
独立完成后全班交流。第2个图形容易画错,可以让学生沿对称轴对折一下看是否完全重叠。
2、
完成教材第6页“练一练”第2题。
独立完成后说一说理由。
五、拓展提升
1、判断。
(1)一张圆形的纸,至少对折3次才能找到圆心。(×)
(2)长方形、正方形、圆和平行四边形都是轴对称图形。(×)
(3)圆的对称轴一定经过圆心。(√)
2、用两个圆设计一个只有一条对称轴的图案。
示例:
六、课堂总结
引导学生小结本节内容。
七、作业布置
教材第6页“练一练”第3、4题。
学生动手折一折,并和同学说说自己的发现。
学生可以先用手里的圆形纸片摆一摆再画。
点名回答并说出理由。
圆的认识教学教案片段导入圆的认识教学内容篇七
教科书第12页,圆的认识及圆各部分的名称。
教学提示:
本节课要求学生进一步认识圆、了解圆的特征、掌握用圆规画圆。渗透了曲线图形和直线图形的关系。通过对圆的认识,不仅能加深对周围事物的了解,提高解决实际问题的能力,也为今后学习圆的周长、面积、圆柱、圆锥等知识打好基础。
单元主题图呈现的学生所熟悉的校园及周边环境的情景图,目的是为了让学生从熟悉的生活环境中感受到圆、圆的周长、圆的面积在实际生活中的应用。
一方面要激发学生学习圆的有关知识的*,另一方面要让学生体会到本单元知识与现实生活的密切联系。
例1呈现有圆的物体,根据它们的共同特征抽象出圆的平面图形。通过圆规的自我介绍,让学生掌握画圆的方法,并归纳出“圆是由曲线围成的一种平面图形”。
例2通过操作活动让学生认识圆各部分的名称和特征。
发现圆的直径和半径都有无数条,在同一圆里,所有的半径和直径的长度都相等,直径的长度是半径的2倍,圆是轴对称图形等特征。
在低年级的学习中,学生已经对圆有了初步的认识。可以在众多所画图形中较为准确地辨认出圆。有一定的研究图形特点的方法积累(如:对长方形和正方形的研究)。这些方法可以为课堂中学生研究圆的特点有一定启发。同时,学生能够体会到圆广泛的存在于我们的生活之中,并能举出生活中圆的例子。但不能很准确地对于生活中圆的例子进行准确性描述。举例说出生活中见到过的圆,学生回答:笔筒、胶条……不能正确认识到这个物体上的某个面是圆形的。但对于让学生做到真正深入认识圆是由之上的若干个点连接而成,以及在学生头脑中充分体会到圆的各点分布均匀性和广泛的对称性还是比较困难的。
同时,六年级的学生对圆规都有一定的了解(平时买作图工具时都是成套的,包含圆规),一般都有画圆的经验。
教学目标:
1.知识与技能:使学生在观察、操作、画图等活动中感受并发现圆的有关特征,知道什么是圆的圆心、半径和直径,能借助物品或圆规画圆,会应用圆的知识解释一些日常生活现象。
2.过程能力与方法:使学生经历从猜想到验证的过程,在活动中进一步积累认识图形的学习经验,增强空间观念、合作意识,培养学生观察、动手操作、抽象概括、与他人合作交流等各方面的能力,进一步发展数学思考。
3.情感态度与价值观:使学生进一步体验图形与生活的联系,感受平面图形的学习价值,提高数学学习的兴趣和学好数学的自信心。
教学重点:
教学难点:
理解直径与半径的关系,熟练掌握画圆的方法。
教具准备:
多媒体课件,为学生准备两张白纸、一个圆片。
学具准备:
圆规、圆形物体、直尺。
教学过程:
一、新课导入
(欣赏单元主题图,激趣引入。)
1.观察主题图。
提问:同学们,在我们美丽的学校内有一个水池,你们观察过吗?池内的鱼儿美丽,水面平静。请同学们想象一下:如果我们在平静的水面上投进一块石子后,水面荡开的波纹,应该是一个近似的什么形状?请用动作说明。
2.揭题:看来同学们对圆已经有了一些认识,今天这节课就学习“圆”。
3.在以前的学习中,已经认识了哪些平面图形?其实圆也和学过的这些图形一样也是一个平面图形,但是和这些图形又有不同之处,你发现了吗?(圆是由曲线围成的一种平面图形) (注意:①学生自带的圆形物体可以让学生用手指一指;②在指物体时,要明确指的是哪一个面;③不能把球误认为圆。)
二、探究新知
1.圆规画圆。
(投影展示例1图中圆形物品)
教师:同学们观察图中的物品,它们是什么形状?
预设:(生:圆形。)
教师:古希腊哲学家、数学家毕达哥拉斯认为“一切平面图形中最完美的是圆!”。你能用手中的工具画一个标准的圆吗?(指向明确用工具画圆,并请学生尝试画圆)
学生独立用画圆,教师巡视指导。
投影展示学生画的圆。(由于是第一次画圆,学生画的可能不规范)
教师可以提问,请你介绍一下你用的是什么工具,是怎么画圆的?
学生回答用圆规画圆。
此时教师可演示怎样使用圆规正确的画圆。(强调不能用手握住圆规的两脚来画圆)
然后跟着要求同学们用圆规再画一个标准的圆。
学生独立画完之后,投影展示学生画的圆,指明学生说画法。
预设:我用圆规画圆,我把圆规的一个脚固定在一个点上,另一个脚绕这个点旋转1圈,就画出了一个圆。
2.认识圆。
(1)提问:观察对比上面所画的两个圆,是不是一样的?(预设:不一样)
哪些地方不一样?(预设:大小、位置)
请同学们思考为什么不一样呢?
圆的位置不一样,是因为固定点的位置不同,其实,我们把在圆中心的这一固定点叫做圆心。画圆时,固定的点叫做圆心,圆心一般用字母o表示。
圆心到圆上任一点的线段是半径,一般用字母r表示。
通过圆心并且两端都在与圆上的线段是直径,一般用字母d表示。
(2)强化认识半径。
教师:刚才同学们画的圆都比较好,我们还认识了半径?那现在大家就在你刚才画的圆中画出这个圆的半径来,画得越多越好。
教师可以提问:想一想,圆有多少条半径? 能画完吗?
预设:在圆内有无数条半径,画不完。
提问:你是怎样观察得出在一个圆内有无数条半径的?
预设:因为半径是连接圆心到圆上任意一点的线段,这样的线段有无数条。
教师:那么半径是一条怎样的线段呀?是连接圆心到圆上任意一点的线段。(展示动画从圆心到圆上的一条线段,齐读) 由于圆周上有无数个点,所以半径就有无数条。
教师:现在就请同学们画出这无数条半径的代表,你认为画几条合适。(预设:1条,因为所有半径都相等。)
质疑,请学生说理由:直尺量;或用圆纸对折。
说明半径的特征并板书:在同一圆内,半径有无数条,并且长度都相等。
(3)强化认识圆的直径。
①除了半径以外,在圆中还有没有像这样比较特殊的线段能决定圆的大小。(预设:直径)
教师:指明学生到黑板上画出来,并提问画时要注意什么?(预设:过圆心,两端在圆上)其实直径就是通过圆心并且两端都在圆上的线段。
②请学生在自己画的圆内画出直径的代表。画得越多越好。
③揭示直径的特征:在同一圆内,直径有无数条,并且长度都相等。
④引出半径和直径的关系,或动手验证;直尺量;或用圆纸对折。
通过对折等活动,得出:圆是轴对称图形,每条直径所在的直线都是圆的对称轴。
(4)揭示半径和直径的关系。
d=2r, r=1
/
2d。这个关系的前提是什么?(预设:同一圆内)
为什么要加这个前提,不要行吗?
学生讨论后汇报。
师生共同小结:在同圆或等圆里,所有的半径都相等,所有的直径也都相等;直径等于半径的2倍。
三、巩固新知
1.练习三第1题:用彩色笔标出下面各圆的半径和直径,并量出长度。
2.完成第13页课堂活动第1题。
第1题(1):画几个圆心在同一点而半径不相等的圆;画几个圆心不在同一点而半径相等的圆。
(预设:因为半径不一样,半径越大,圆就越大)由此得出:圆的大小是由半径决定的。
第2问画完后,教师可以提问:这几个圆的大小是一样的,为什么有的圆在这里,有的圆在那里呢?(预设:因为圆心的位置不一样)由此得出:圆的位置是由圆心决定的。
第1题(2):学生独立画半径为2.5厘米的圆,用字母标出圆心、半径和直径,小组内交流。
3.独立完成教材13页课堂活动第2题,小组内交流。
四、达标反馈
1.说一说圆中什么样的线段是半径、什么样的线段是直径?
2.判断题。
(1)所有的半径都相等,所有的直径也都相等。 ( )
(2)从圆心到圆上的任意一点的距离都相等。 ( )
(3)画一个直径为4厘米的圆,圆规两脚间的距离应是4厘米。 ( )
(4)直径是3厘米的圆比半径是2厘米的圆大。 ( )
3.填一填。
(1)一个边长8厘米的正方形里,画一个的圆,这个圆的直径是( )厘米,半径是( )厘米。
(2)在一个长6分米、宽4分米的长方形里,画一个的圆,这个圆的半径是( )分米。
五、课堂小结
教师:通过这节课的学习,你对圆有哪些认识?你有什么收获?
学生谈自己的收获,畅所欲言。
教师:想一想生活中的一些物品为什么要设计成圆形?车轮为什么要设计成圆形?下节课我们一起来交流。
圆的认识教学教案片段导入圆的认识教学内容篇八
作者:张齐华
●背景分析 张齐华《圆的认识》课堂实录及相关整理
“圆的认识”一课选自小学数学教材第11册,是在学生认识了长方形、正方形、三角形等多种平面图形的基础上展开,也是小学阶段认识的最后一种常见的平面图形。教材的编排思路是先借助实物揭示出“圆”,让学生感受到圆与现实的密切联系,再引导学生借助“实物”、“圆规”等多种方式画圆,初步感受圆的特征,并掌握用圆规画圆的方法,在此基础上,再引导学生通过折一折、画一画、量一量等活动,帮助学生认识直径、半径、圆心等概念,同时掌握圆的基本特征。这样的编排,学生对于圆的相关概念及特征的理解和把握一般都是建立在教师的明确指引和调控之下,学生相对独立的探索空间不够,而与此同时,学生对于圆所内涵的文化特性也无从感受、体验,对于圆在历史、文化、数学发展过程中与人类结下的不解之缘感受不深。
基于这样的认识,我试图对本课的教学思路进行重新调整:一方面,通过拓展空间,将学生进一步置身于探索者、发现者的角色,引导学生在认识完圆的一些基本概念后,自主展开对于圆的特征的发现,并在交流对话中完善相应的认知结构;另一方面,我又借助媒体,将自然、社会、历史、数学等各个领域中的“圆”有效整合进本课教学,充分放大圆所内涵的文化特性,努力折射“冰冷”图形背后所散发的独特魅力。
想起美国学者泽布罗夫斯基,曾因为“在凝望波涛的时候”而产生了写作《圆的历史》这一迷人著作的冲动,而我――一个普通的年轻教师,又是如何想起要在自己的课堂里打破常规、冲破樊篱,演绎“走进圆的世界”这一多少有些另类的教学案例的呢?如今回想起来,是平静水面上漾起的一圈圈涟漪?是阳光下朵朵绽放的金色向日葵?是慈母心中那轮永恒的明月?是“长河落日圆”中夕阳下落日的余辉?是伟大思想家墨子笔下“圆,一中同长也”和数学巨著《周髀算经》中“圆出于方,方出于矩”的召唤?是古老的阴阳太极图所给予的神秘诱惑?是“没有规矩,不成方圆”这一古训背后的力量?还是西方数学哲学中“圆是最美的图形”所带来的无限诱惑?似乎都是,又不完全是。只是有一种莫明的冲动,一直萦绕心头,那就是:怎样让数学课堂再厚重些、开阔些、深邃些、美丽些……藉此,想到了圆,继而,便有了“走进圆的世界”这一大胆尝试。
●过程描述
[一]
生:钟面上有圆。
生:轮胎上有圆。
生:有些钮扣也是圆的。
……
生:(激动地)水纹、水纹、圆……(声音此起彼伏)
生:(惊异地,慨叹地)找到了。
生:(激动地)好!
[二]
生:――画不出圆的。
师:同学们都准备了一把圆规,你能试着用它在白纸上画出一个圆吗?
生:能。
(学生尝试用圆规画圆,交流,明确圆规画圆的基本方法。)
生:不可能。
生:能。
(学生以小组为单位,利用手中的工具和材料画圆。)
师:张老师发现,每个小组都有了各自精彩的创造。让我们一起来分享。
生:我们组将圆形的瓶盖按在白纸上,沿着瓶盖的外框画了一个圆。
师:那叫“拷贝不走样”。(生笑)
生:我们手中的三角板中就有一个圆形窟窿,利用它,很方便地画出了一个圆。
师:真可谓就地取材,挺好!(笑)
生:我们组在绳子的一端系一支铅笔,另一端固定在白纸上,绳子绷紧,将铅笔绕一圈,也画出了一个圆。
师:看得出,你们组的创作已经初步具备了圆规的雏形。
生:我们组在绳子的一端系上一块橡皮,抓住绳子的另一端一甩,也同样出现了一个圆。
师:尽管这一方法没有能在白纸上最终“画”出一个圆,但他们的创造仍然是十分美妙的,不是吗?(生热烈鼓掌)
生:我想,大概是古时候的人们没想到这些方法吧?(生笑)
生:我觉得不是这样,因为,或许一开始,“没有规矩,不成方圆”指的是没有圆规和“矩”画不出方和圆,但是流传到后来,它的意思已经发生了改变,不再仅仅指原来的意思了,而是指很多事情,必须要讲究规矩,遵循章法。(不少同学投以赞许的目光)
师:真没想到,一条普通的数学规律,经过千年流传,竟逐渐成为我们生活中一条重要的人生准则。当然,同学们能够利用各自的智慧,成功演绎“没有规矩,仍成方圆”,足以说明大家不凡的创造力了。
[三]
(通过自学,学生认识完半径、直径、圆心等概念后。)
生:有(自信地)。
师:说得好,其实不说别的,就圆心、直径、半径,还蕴藏着许多丰富的规律呢,同学们想不想自己动手来研究研究?(想!)同学们手中都有圆片、直尺、圆规等等,这就是咱们的研究工具。待会儿就请同学们动手折一折、量一量、比一比、画一画,相信大家一定会有新的发现。两点小小的建议:第一,研究过程中,别忘了把你们组的结论,哪怕是任何细小的发现都记录在学习纸上,到时候一起来交流。第二,实在没啥研究了,别急,老师还为每一小组准备一份研究提示,到时候打开看看,或许对大家的研究会有所帮助。
(随后,伴随着优美的音乐,学生们以小组为单位,展开研究,并将研究的成果记录在教师提供的“研究发现单”上,并在小组内先进行交流)
师:光顾着研究也不行,我们还得善于将自己的发现和大家一起交流、一起分享,你们说是吗?(是)很多小组都向张老师推荐了他们刚才的研究发现,张老师从中选择了一部分。下面,就让我们一起来分享大家的发现吧!
生:我们小组发现圆有无数条半径。
师:能说说你们是怎么发现的吗?
生:我们组是通过折发现的。把一个圆先对折,再对折、对折,这样一直对折下去,展开后就会发现圆上有许许多多的半径。
生:我们组是通过画得出这一发现的。只要你不停地画,你会在圆里画出无数条半径。
生:我们组没有折,也没有画,而是直接想出来的。
师:噢?能具体说说吗?
生:不需要了,因为道理是一样的。
师:关于半径或直径,还有哪些新发现?
生:我们小组还发现,所有的半径或直径长度都相等。
师:能说说你们的想法吗?
生:我们组是通过量发现的。先在圆里任意画出几条半径,再量一量,结果发现它们的长度都相等,直径也是这样。
生:我们组是折的。将一个圆连续对折,就会发现所有的半径都重合在一起,这就说明所有的半径都相等。直径长度相等,道理应该是一样的。
生:我认为,既然圆心在圆的正中间,那么圆心到圆上任意一点的距离应该都相等,而这同样也说明了半径处处都相等。
生:关于这一发现,我有一点补充。因为不同的圆,半径其实是不一样长的。所以应该加上“在同一圆内”,这一发现才准确。
师:大家觉得他的这一补充怎么样?
生:有道理。
生:我们小组通过研究还发现,在同一个圆里,直径的长度是半径的两倍。
师:你们是怎么发现的?
生:我们是动手量出来的。
生:我们是动手折出来的。
师:看来,大家的想象力还真丰富。
生:我们组还发现圆的大小和它的半径有关,半径越长,圆就越大,半径越短,圆就越小。
师:圆的大小和它的半径有关,那它的位置和什么有关呢?
生:应该和圆心有关,圆心定哪儿,圆的位置就在哪儿了。
生:我们组还发现,圆是世界上最美的图形。
师:能说说你们是怎样想的吗?
生:好。
[四]
生:圆心。
师:那同长又指什么呢?大胆猜猜看。
生:半径一样长。
生:直径一样长。
师:这一发现,和刚才大家的发现怎么样?
生:完全一致。
生:特别的自豪。
生:特别的骄傲。
生:我觉得我国古代的人民非常有智慧。
生:圆的直径是6厘米。
生:圆的半径是3厘米。
生:阴阳太极图。
生:小圆的直径是6厘米。
生:大圆的半径是6厘米。
生:大圆的直径是12厘米。
生:小圆的直径相当于大圆的半径。
……
生:我觉得石子投下去的地方就是圆的圆心。
生:石子的力量向四周平均用力,就形成了一个个圆。
生:这里似乎包含着半径处处相等的道理呢。
师:瞧,简单的自然现象中,有时也蕴含着丰富的数学规律呢。至于其他一些现象中又为何会出现圆,当中的原因,就留待同学们课后进一步去调查、去研究了。
(伴随着优美的音乐,如下的画面一一展现在学生眼前:生活中的圆形拱桥、世界著名的圆形建筑、中国著名的圆形景德镇瓷器、中国民间的圆形中国节、中国传统的圆形剪纸、世界著名的圆形标志设计等等,如图⑤。)
师:感觉怎么样?
生:我觉得圆真是太美了!
生:我无法想象生活中如果没有了圆,将会是什么样子。
生:生活中因为有了圆而变得格外多姿多彩。
……
师:而这,不正是圆的魅力所在吗?
[五]
师:西方数学、哲学史上历来有这么种说法,“上帝是按照数学原则创造这个世界的”。对此,我一直无从理解。而现在想来,石子入水后浑然天成的圆形波纹,阳光下肆意绽放的向日葵,天体运行时近似圆形的轨迹,甚至于遥远天际悬挂的那轮明月、朝阳……而所有这一切,给予我们的不正是一种微妙的启示吗?至于古老的东方,圆在我们身上遗留下的印痕又何尝不是深刻而广远的呢。有的说,中国人特别重视中秋、除夕佳节;有人说,中国古典文学喜欢以大团圆作结局;有人说,中国人在表达美好祝愿时最喜欢用上的词汇常常有“圆满”“美满”……而所有这些,难道就和我们今天认识的圆没有任何关联吗?那就让我们从现在起,从今天起,真正走进历史、走进文化、走进民俗、走进圆的美妙世界吧!
●自我反思
多少年来,在孩子们的心目中,在教师们的课堂里,数学一直与定理、法则、记忆、运算、冷峻、机械等联系在一起,难学难教、枯燥乏味一直成为障碍学生数学学习的绊脚石。事实上,造成这一现象的原因是多方面的,而一味注重数学知识的传递、数学技能的训练,漠视数学本身所内涵的鲜活的文化背景,漠视浸润在数学发展演变过程中的人类不断探索、不断发现的精神本质、力量以及数学与人类社会(包括自然的、历史的、人文的)千丝万缕的联系,显然应看成造成这一现象的重要原因之一。
众所周知,数学本质上是一种文化,《数学课程标准》在前言中明确指出:数学的“内容、思想、方法和语言是现代文明的重要组成部分。”如何在课程实施过程中践行并彰显数学的文化本性,让文化成为数学课堂的一种自然本色,我立足从过程与凝聚两个角度进行探索。“圆的认识”一课正是我所作的一次粗浅尝试。
数学发展到今天,人们对于她的认识已经历了巨大的变化。如今,与其说数学是一些结论的组合,毋宁说她更是一种过程,一种不断经历尝试、反思、解释、重构的再创造过程。因而对于圆的特征的认识,我并没有沿袭传统的小步子教学,即在亦步亦趋的“师生问答”中展开,而是将诸多细小的认知活动统整在一个综合性、探究性的数学研究活动中,通过学生的自主探索、合作交流、共同分享等,引领学生经历了一次“研究与发现”的完整过程。整堂课,“发现与分享”成为真正的主旋律,而知识、能力、方法、情感等恰恰在创造与分享的过程得以自然建构与生成。
在承认“数学是一种过程”的同时,我们也应清晰地意识到,作为人类文化重要组成部分的数学,在经历了漫长的发展过程后,“凝聚”并积淀下了一代代人创造和智慧的结晶,我们有理由向学生展现数学所凝聚的这一切,引领学生通过学习感受数学的博大与精深,领略人类的智慧与文明。藉此,教学伊始,我们选择从最最常见的自然现象引入,引发学生感受圆的神奇魅力;探究结束,我们介绍了中国古代关于圆的记载,从宏观的视野丰富学生的认识视域;最后,我们更是借助“解释自然中的圆”和“欣赏人文中的圆”等活动,帮助学生在丰富多彩的数学学习中层层铺染、不断推进,努力使圆所具有的文化特性浸润于学生的心间,成为学生数学成长的不竭动力源泉,让数学课堂摆脱原有的习惯思维与阴影,真正美丽起来。
当然,“理想的课程”如何转化为“现实的课程”,这当中仍然有许多值得深切关注的话题。就拿本课教学而言,实施下来,应该说,学生对于“圆”这一冰冷图形背后所蕴含的人文的、文化的特性的感受还是十分真切的,然而,作为问题的另一方面,对于基本的数学知识、数学技能的掌握,在教学后的反馈中也确实暴露出了一定的问题,尤其表现在部分学生对于圆的半径、直径等概念的理解不够到位,对于直径、半径及其与圆之间的关系的掌握不够透彻等。因而,今后我们在数学课堂演绎数学文化、数学精神等层面的同时,如何兼顾知识与技能的教学,如何使我们的课堂活中有实,实中见活,应该还是有一定的启示意义的。

一键复制