作为一位兢兢业业的人民教师,常常要写一份优秀的教案,教案是保证教学取得成功、提高教学质量的基本条件。写教案的时候需要注意什么呢?有哪些格式需要注意呢?下面是小编为大家带来的优秀教案范文,希望大家可以喜欢。
比的应用教学设计比的应用教案公开课篇一
1。了解什么是应用题的已知条件和问题,初步理解一步应用题的结构。
2。会联系加减法的含义解答有图有文字的一步计算应用题。
3。培养初步的分析、判断和推理能力。
有图有文字应用题的解答。
解答有图有文字的减法应用题。
教师准备教科书第88页例5的两幅图的图画,独立作业的投影片。
学生准备教科书第88页数学游戏的口算卡片和得数卡片。
一、铺垫孕伏。
6+2=9+4=9+9=
9+3=3+5=4+6=
9+7=9+6=9+5=
2+7=9+2=9+8=
统计2分钟以内做完的人数及正确率。指名说一说计算9+3和9+7应该怎样想。
二、探究新知。
1、导入。
(1)教师出示例5的左图(小鸟图),3只小鸟落在树枝上,再出示一幅图,上面画有6只小鸟。
师:图中先告诉我们什么?又告诉我们什么?
引导学生回答:图中先告诉我们树上有3只鸟,又告诉我们又飞来6只。
师:求一共是多少只该怎样算呢?
引导学生回答:求一共是多少只,就是把树上的3只鸟和又飞来的6只合起来,把3和6合起来是9,列式为:3+6=9。
教师取下后贴上的第二幅图,在第一幅图的下面贴上用文字写出的条件和问题,成为例5左边的题。
(2)揭示课题。
像这样有图有文字的应用题应当怎样解答呢?今天我们就学习有图有文字的应用题。板书课题:应用题。
2、教学例5左边的加法应用题。
(1)学生讨论:题里告诉了什么?还告诉了什么?让我们求什么?
教师说明,已经告诉我们的树上有3只小鸟和又飞来6只都叫已知条件,让我们求的一共是几只叫做问题。在这道题中,第一个已知条件是用图画表示的,第二个已知条件是用文字表示的,问题也是用文字表示的。我们学过的应用题一般都有2个已知条件和1个问题。让学生自己小声说一说题中的两个已知条件和1个问题,指名让学生到前边指一指。
(2)求一共是多少只怎样计算呢?
(3)让学生把教科书第88页例5左题的算式补充完整。
(4)反馈练习。
完成“做一做”左边的加法题(小兔图)。
先让学生说一说题中的条件和问题分别是什么,怎样计算,然后让学生填书上的空。
3、教学例5右边的减法应用题。
(2)拿走盖着4个梨的纸,出示例5右题的用文字叙述的第二个条件和问题,成为例5右边的减法应用题。
让学生自由读一读题,找出题中的两个已知条件和1个问题。
引导学生说出:第一个已知条件是,盘子里有10个梨,是用图画表示的。第二个已知条件是,吃了4个梨,是用文字叙述的。问题是:还剩几个?也是用文字叙述的。
师:求还剩几个应该怎样想,怎样列式呢?
(3)让学生把教科书第88页例5右边的减法应用题的算式补充完整。
(4)反馈练习。
完成“做一做”右边的题(汽车图)。
引导学生汇报:
相同点,都有2个已知条件和1个问题,都是根据加减法的含义列式计算的。即把两个数合并在一起,求一共是多少,用加法算。从一个数里去掉另一个数,求还剩多少,用减法算。
不同点,图画应用题的已知条件和问题都是用图画表示的,比较简单。有图有文字的应用题是画表格,表格中有图有文字来表示已知条件和问题,比图画应用题难一些。
5、看书,质疑。
三、课堂小结。
今天我们学习的应用题,有一个已知条件是用图画表示的,另一个已知条件是用文字表示的,做题时,先看清已知条件和问题,再想用什么方法计算,然后再列式计算。
四、随堂练习。
1、练习十九第1题(图片:练习3)。
先让学生自己把算式写到练习本上,然后订正。订正时让学生说一说已知条件是什么,问题是什么,是怎样想的,怎样算的。
2、比比看哪组先夺得红旗(图片:练习4)。
把全班同学分成男女两组,分别做红旗两边的两组题,全组同学全部完成,速度快,正确率高的获得红旗。
3、游戏“你争我抢”【详见探究活动】。
布置作业
(投影片出示)
让学生写到作业本上,独立完成作业后,让学有余力的学生做思考题。
应用题
教学开始抓住图画应用题与表格应用题的内在联系,利用学生已有经验,引导学生学习,激发学生兴趣,有利于新知的学习。整个教学过程注意引导学生参与学习的全过程,通过师生合作学习,使学生学会学习,通过体验形成能力,有利于学生思维的发展。
比的应用教学设计比的应用教案公开课篇二
《比的应用》是新世纪小学数学六年级上册的内容,是在学生理解了比的意义、比的化简、比与分数的联系、以及掌握用分数乘、除法解决简单问题的基础上,把比的知识应用于解决相关的实际问题的一个课例。比的应用又称按比例分配,按比例分配有按正比例分配和反比例分配两种,由于按反比例分配的实际应用并不广泛,而且可以转化为按正比例分配来解答,因此教材只教学按正比例分配。按比分配是“平均分”问题的发展,平均分是按比分配的特例。研究比的应用,也为以后学习 “比例”、“比例尺”的知识奠定基础。
教材有两部分内容:分一分和算一算。分一分:创设一个给两个班的小朋友分橘子的情境,鼓励学生通过实际操作,在交流不同分法的过程中体会到1:1分配的不合理性,产生按比分配的需要,同时体会按比分配在生活当中的实际应用;算一算:在有了实际操作的基础上,解决把140个橘子按3:2分给两个班,引导学生自主探索出不同的解决问题的策略,鼓励学生运用合理的解题策略解决实际问题。
学生在二年级上册学习了除法的意义,了解了“平均分”,即按1:1分,学生在五年级上册学过分数的意义、分数与除法的关系,本单元学习了比的意义和比的化简。由于比与除法、分数有着密切的联系,所以,比的很多基础知识与除法、分数的相关知识具有明显的、可供利用的内在联系,这些对于学生学习比的应用奠定了良好的知识基础。
比的知识在生活中有着很广泛的应用,因此,学生也有一定的经验基础。因此,教学这部分内容时,应当充分利用原有的学习基础,引导学生联系相关的已学知识,进行类比和推理,尽可能让学生自主学习,通过自己的思考,推出新结论,解决新问题。
3、使学生在探索未知、寻求成果的过程中品味学习的乐趣,并养成积极、主动的探究精神。
课前准备:学生查找有关事物各组成部分比的资料,课前让学生熟悉用量杯量取溶液的方法。
课上准备:有关课件、黄、蓝色颜料、量杯等。
理解按比分配的实际意义,并能运用比的意义解决按照一定的比进行分配的实际问题。
理解按比分配的实际意义,沟通比与分数之间的联系。
一、情境导入
情境一:师:作为一个大连人,你对自己的家乡熟悉吗?大连给你留下最深的印象是什么?我今天特地给同学们带来几幅大连的风光图,咱们一起去看看。(课件演示)
看过之后,你对大连又有什么感受?如果把这些美丽的景色画下来?那主色调应该是什么色?(板书:绿)
现在我们就来调配绿色,为大连画一幅美丽的图画。谁知道绿色是怎么配出来的?(板书:黄+蓝——绿)
情境二:同学们,你们在美术课上学过三原色,三原色中有绿色吗?绿色是怎么调配出来?(板书:黄+蓝——绿)
二、实验操作
1、动手操作,调配绿色
师:今天,咱们就用这两种颜色调配出绿色。(每组准备了蓝色和黄色颜料,一个小量杯,一个大量杯,大量杯上贴上组号)
要求:以小组为单位进行调配;各小组在调配之前先商量好每种颜色各用多少ml,用小量杯量取黄色与蓝色颜料,记录下数据之后倒入大量杯并搅拌。组内先进行分工,然后再动手操作,看哪个小组的动作最快。
(学生动手操作,老师进行指导。)
配好之后,小组长把调好的绿色放在前面一字排开,并将数据写在黑板上统计表中。
2、观察发现,得出结论
(1)观察。师:结合这些数据,再观察这些绿色,你发现了什么?(学生会发现,同样是用黄色与蓝色配,调出来的绿色却不一样)
师:为什么每组都用黄色和蓝色的颜料配绿色,调出来的绿色却不一样呢?结合数据自己先独立思考,然后把你的想法在小组内交流一下。
学生调配的绿色可能会出现如下情况:
① 所有的小组所用的数据都不一样,则所配出来的绿色各不相同。学生可能会说所取的黄与蓝的量不同,所以颜色不同。师:“还有不同的想法吗?’’如果没有,再出示黄与蓝体积比为3:2的大小两杯绿色,量不同,但颜色却相同,以此引发学生思考。
根据以上的数据,学生很有可能回答:每个组用的蓝色和黄色的量同样多就可以调配出完全一样的绿色,但如用此方法,则只能调配出一种绿色来,答案有局限性;学生也可能回答:每个组用的黄色一样多,用的蓝色也一样多,如每组都用10g黄色和30g蓝色,但用此方法,每组必须用同样多的量,如果有的组根据需要想多配点,怎么办?答案也有局限性;学生可能会想到,每组所用的量可以不相等,但只要所取的黄色与蓝色的体积比是一定的,如每组的黄色与蓝色的比都是 1:3,就可以调配出完全一样的绿色来。
(3)将统计表中各组所用蓝色与黄色的最简体积比写出来,引导学生再结合杯中的绿色观察,看所得结论是否正确。
师:其实刚才同学们说的用黄色与蓝色同样多也就是黄色与蓝色的体积比为1:1。
3、再次调配黄色与蓝色的比为3:2的绿色。
学生可能的回答:在这瓶颜料中,黄色占其中3份,蓝色占其中2份;黄比蓝多1份,蓝比黄少1份;黄占绿的3/5,蓝占绿的2/5;黄占蓝的3/2,蓝占黄的2/3;黄比蓝1/2,蓝比黄少1/3等等。
(2)小组进行动手操作,并记录分配的过程。反馈不同方法。全班观察杯中的绿色是否一样。
三、动笔计算
2、学生独立试做,并交流不同的算法。学生可能出现的算法:
师:2/5和3/5各表示什么?说给同桌听一听。
师:谁能说说他是怎么想的?
方法3:解:设一份量为xml。
3x+2x=120
5x=120
x=24
3x=24×3=72
2x=24×2=48
3、比较几种方法之间的异同。师:同学们能用不同的方法解决这一问题,非常聪明,让我们再来看这两种方法(方法1和方法2),它们有什么联系?(把 120ml平均分成5份,取3份,实际上就是求120的3/5是多少)以前我们没学分数乘法时,同学们习惯用整数的方法做,现在根据分数与除法的关系,这样的题咱们就可以用分数的方法来解决。用分数方法解决这类题的关键是什么?(根据比找准谁占谁的几分之几)
4、如果我取60ml的黄色倒在杯子里,该往里倒多少ml的蓝色,才能配成黄与蓝比是3:2的绿色呢?请用分数的方法解决这个问题。
三、小结
像这样,把一个数量按照一定的比来进行分配,在生活中会常常遇到(板书:比的应用)。以前我们常说的平均分,实际上就是按照1:1的比进行分配的。课前,老师让同学们调查了一些事物各组成部分的比,现在就把你搜集到的资料在小组内跟同伴们交流交流。(汇报:谁能说给大家听一听)
四、巩固应用
1、(资料)学生营养午餐中菜的供给量,应包括瓜果蔬菜类、大豆及其制品类、鱼肉禽蛋类等三类食物,这三类食物所占比分别为13:2:5左右为适宜。
2、同学们正是长身体的时候,饮食上要合理,不要挑食。如果营养搭配不当,很可能出现这种情况。(出示:大头娃娃图)
老师看到同学们搜集到了这样一条信息:人们经过测量和统计,发现12周岁的儿童,头部与头部以下的高度比一般是2:13。和同桌说说从这个比中你还能知道哪些信息。
咱们来验证一下这条信息是否准确。请一名学生到讲台前,先估计一下她的头部大约有多长?(实际测量)请同学们根据头部与头部以下的高度比是2:13来算算她大约有多高。
(反馈:拿学生的本在投影上展示,同时由学生讲述各种方法。)
你们都知道自己的身高吧?有没有兴趣算一算自己头部的长度?(算完之后,同组内成员可以互相量一量,验证一下算得对不对。)
四、总结。
2、你今天有什么收获?生活中按比分配的问题还有很多,希望同学们能用今天学过的知识解决更多生活中的问题。
比的应用教学设计比的应用教案公开课篇三
1、教材简析
本课时的教学内容主要是硝酸及其应用。本章的核心内容是元素化合物知识,而高中阶段学习的元素化合物主要有:碳及其化合物、硫及其化合物、氮及其化合物,镁、溴、碘等众多的物质。硝酸作为含氮物质在介绍元素化合物知识是必不可少的,且硝酸是中学化学中的三大强酸之一,掌握硝酸的性质及其应用是必要的。本节的教学在了解硝酸的氧化性的基础上让学生了解浓、稀硝酸与其他物质发生氧化还原反应时生成物不一样。
2、教学目标
(一)、知识教学目标:使学生掌握硝酸的物理和化学性质,了解随着硝酸浓度的变化硝酸与其他物质反应生成物也发生变化。
(二)、能力目标:培养学生通过观察实验,记录实验现象,分析实验,得出结论的能力,同时增强学生的环保意识。根据所学的氧化剂和还原剂的知识来了解硝酸的氧化性,掌握硝酸与其他物质反应的化学方程式。
(三)、情感目标:激发学生学习化学的兴趣,培养学生严肃认真、实事求是的实验习惯和科学态度,对学生进行辩证法教育,增强环保意识和创新意识。
3、教学的重点、难点:
硝酸的不稳定性、强氧化性是本节课的重点;
硝酸的强氧化性是本节课的难点。
学生在前面的学习中,知道了硝酸是常见的氧化剂,而且具备了一定的观察分析实验的能力。因此通过引导学生从硝酸的应用入手探讨硝酸的性质。根据教材内容和教学目标,运用化学研究的方法论为指导,采用提出问题——实验——观察分析——研究讨论——结论——应用的边讲边实验的实验探索方法进行施教,主要侧重于实验探索、对比分析、归纳概括。
化学是一门以实验为基础的科学,学生通过直观生动的实验来学习,才能留下深刻的印象,也具有说服力。教学时,应该注意及时引导学生对实验现象进行分析。同时利用一些富于启发性的思考问题,活跃学生思维,增强分析问题的能力。引导学生及时进行总结,寻找知识间的相互联系,掌握科学有效的记忆方法,提高记忆的效果。
简明扼要地从解释谚语雷雨发庄稼的道理引入。
(二)硝酸的性质:包括硝酸的物理性质和化学性质
1、硝酸的物理性质
让学生根据实验提纲进行实验操作,简单描述实验现象,培养学生的观察能力和表达能力。
2、硝酸的化学性质:重点学习硝酸的不稳定性和强氧化性。
比的应用教学设计比的应用教案公开课篇四
课本第143页例2;练一练第1~6题。
这部分内容是学生在学会了求圆的周长与直径、半径的关系以及已知圆的半径求圆面积的基础上,来学习已知圆的周长。求圆面积的应用题。
本班学生计算能力还可以,就是对应用题有一种害怕心理。
1、进一步掌握圆面积公式,并能正确地计算圆面积。
2、能运用圆面积计算公式,正确地解决一些简单的实际问题。
会熟练运用公式求圆面积。
求出需要的条件,即圆的半径。
作业纸、课件。
一、复习。
课件出示:
(一)求下列各题中圆的半径。
(1)c=6.28分米,r=?;(2)d=30厘米,r=?
(3)c=15.7分米,r=?;(4)d=18.84厘米,r=?
(二)、求下列各圆的面积。
(1)r=2分米,s=?(2)d=6米,s=?
(3)r=10厘米,s=?(4)d=3分米,s=?
只要求学生进行口头表述计算公式(不求计算结果)
二、学生活动:
要求两人一小组,到室外找一个圆形物体的平面,计算出它的面积。
运用学生事先准备的工具(细绳、直尺等)
三、汇报交流
小组把作业纸上交,交流心得
姓名
准备工具
物体名称周长
半径
面积
四、巩固练习
练一练第1~6题。
《作业本》p73。
板书设计:
圆面积公式的应用
r=d÷2
r=c÷π÷2
s=πr
比的应用教学设计比的应用教案公开课篇五
北师大版小学数学教材六年级上册第55—56页。
1、能运用比的意义解决按照一定的比进行分配的实际问题。
2、进一步体会比的意义,感受比在生活中的广泛应用。
3、提高解决问题的能力。
理解按一定比例来分配一个数量的意义。
根据题中所给的比,掌握各部分量占总数量的几分之几,能熟练地用乘法求各部分的量。
ppt
三角形学具
练习题
一、复习引入:
生1:女生人数与男生人数之比是4:3、
生2:全班的人数是7份,男生占其中的3份,女生占其中的4份。
生3:男生人数是女生人数的3/4。
生4:女生人数是男生人数的4/3、
生5:男生人数是全班人数的3/7。
生6:女生人数是全班人数的4/7。
生7:男生人数比女生人数少1/4。
生8:女生人数比男生人数多1/3、
师:看来,同学们对“比”的知识掌握得相当不错。
二、探究新知:
1、创设情境:
师:最近,笑笑遇到了一个问题。(ppt)谁来说说是什么问题?
生:她要把一筐橘子分给幼儿园的大班和小班,可是不知道怎么分合理。
师:你们能帮助她吗?怎么分合理?谁来说说你的想法?
生1:按班级来分,每个班分这筐橘子的一半。
师:每个班分这筐橘子的一半,这是我们以前所学习过的哪种分法?
生:平均分。
师:还有谁想发表自己的意见?
生2:按大班和小班的人数比来分。
师:按人数比来分是按几比几分?
生:按3:2分。(板书:3:2)
师:那你们知道“平均分”是按几比几来分吗?
生:按1:1分。
师:我们以前所提到的“平均分”,其实就是按照1:1的比进行分配,但是在一些特殊的情况下按照“平均分”并不合理。这时候我们就要考虑一些特定的因素,然后按照一定的比来进行分配。(ppt:按3:2分合理)
2、揭示课题:
师:这节课,我们就来学习按一定的比进行分配的实际问题。(板书:比的应用)
3、分一分。
(1)出示题目:这筐橘子按3:2应该怎样分?(ppt)
①小组合作(用三角形代替橘子,实际操作)。
师:请同学们以小组为单位,拿出你们桌上的纸袋,用里面的三角形代替橘子,来实际操作一下。请大家一边分,一边在本子上记录下你们分配的过程。最后看看大班和小班各能分到多少个橘子。
②小组汇报。(投影学生的分配记录)
师:分好了吗?哪个小组愿意来说说你们分配的过程?
生1:我们是这样分的:先给大班3个,小班2个;然后再给大班3个,小班2个;第三次还是给大班3个,小班2个,就这样,我们一共分了8次,分完了。我们由此知道这堆三角形有40个,最后大班分到了24个,小班分到16个。
师:分了8次分完了,看来你们做事比较有耐心。事实上很多科研成果也是通过科学家们的无数次实验得来的,所以耐心完成一件工作是值得我们学习的。
生2:我们前两次分的方法和他们一样,第三次分的时候我们发现还剩下很多,我们就给大班分了6个,小班分4个,这样又分了2次就分完了。这堆三角形有40个,最后大班分到24个,小班分到16个。
师:分的结果都一样,但看来你们分的次数要比他们少一些,分得快一些,看来你们也动了脑筋。
生3:因为要按3:2来分,而三角形有一大堆,所以我们就想给大班分30个,小班分20个,后来发现三角形不够,就换成给大班15个,小班10个;剩下的大班给9个,小班给6个,一下子就分完了。
师:你们虽然开始不够,但你们的想法很好,而且实际上你们也一下子就分完了,能干。
生4:列算式解。
师:利用份数来解决这个问题,你们的见解很独到。
③发现规律。
生2:我发现6:4,30:20,15:10,9:6结果都是3:2、
生3:我觉得按3:2的比来分和以前我们学过平均分是不一样的。平均分两个人分得的个数相同,而按3:2的比分来分的话,两个人分得的个数不同。
(2)出示题目:如果有140个橘子,按照3:2又应该怎样分?(ppt)
①独立思考,合作交流。
师:如果现在有140个橘子,按照3:2分给大班和小班,又该怎么分呢?每个班能分到多少个?请同学们思考一下,自己在本子上写一写,算一算。写完之后,可以在小组内交流交流。 ②汇报展示。(抽生板演列式的两种方法)
师:还有不同的方法吗?(投影其他方法)
师:这是谁做的?你是怎么想的?
方法一:表格
方法二:画图。
方法三:列式。
a:3+2=5 140×3/5=84(个)140×2/5=56(个)
答:大班分84个,小班分56个,比较合理。
师:为什么要用“3+2”?“3/5”在这里表示什么?
生:用“3+2”算出橘子的总份数,3/5表示大班能分到橘子总数的3/5。
b:3+2=5 140÷5=28(个)28×3=84(个)28×2=56(个)
答:大班分84个,小班分56个,比较合理。
师:为什么要“÷5”?
生:“÷5”是把总数平均分成5份,先求出1份是多少,再给大班分3份,小班分2份。
③比较不同的方法。
师:列式计算的a方法,是先求出总份数,然后找到各部分的数量占总量的几分之几,最后按照“求一个数的几分之几是多少”的方法,求出各部分的数量;而列式计算的b方法,是先求出总份数,然后算出一份的数量,最后根据各部分所占的份数来求出各部分的数量。
4。小结。
师:我个人觉得,同学们的这些方法各有千秋,都很不错,建议大家都掌握。那么在解决实际问题的时候,关键还是要认真分析数量关系,弄清各个数量之间的份数。
1、填一填。
师:在我们的生活中,还有许许多多按照一定的比来进行分配的问题,下面我们就一起来看一看。(ppt)
师:(5题)甲班能得到18本。怎么得到的?(2题)按1:1来分,也就是平均分。
2、试一试。
师:试一试你能试着独立完成吗?做在课堂作业本上。(投影学生作业)
师:写完了吗?我们来看看这位同学做的。对吗?
生:回答。
1、数学故事:阿凡提分马。
师:紧张的学习之后,我们一起来看一个小故事。(ppt)
师:听了这个故事,你想说什么?
师:其实,这个故事的问题根本,其实是在于原先商人的遗嘱中,1/2,1/4和1/6相加的和不为1、有兴趣的同学,我们可以下来以后再讨论。
2、闯关活动。
师:老师这里还有几个问题,想请同学们思考一下。
师:通过今天的学习,同学们有什么收获呢?
比的应用教学设计比的应用教案公开课篇六
2、 讨论:
(1)这三道应用题之间有什么联系和区别?
(2)列方程解应用题的步骤是什么?
①审题;(弄清题意)
②设未知数;
③找出等量关系、列方程;
④解方程;
⑤检验、写答案;
(3)用方程解和用算术方法解,有什么不同?
方程解:a、用字母代表未知数参加列式与运算;
b、列出符合题中条件的等式;
算术解:a、算式中应全是已知数;
b、算式必须表示所求的未知数;
3、 练习:
① 114页“做一做”;
② 练习二十四的第1、2题。
三、巩固练习:(补充练习)
1、①男生50人,女生比男生的2被多10人,女生多少人?
②男生50人,比女生2被多10人,女生多少人?
③全班50人,男生比女生的2倍多10人,男、女生各多少人?
四、作业:
联系二十四3、4、5、6题
比的应用教学设计比的应用教案公开课篇七
北师大版六年级数学上册第55页、第56页。
知识与技能:
能运用比的意义解决按照一定的比进行分配的实际问题。
过程与方法:
讲练结合,小组合作,三疑三探。
情感、态度、价值观:
进一步体会比的意义,提高解决问题的能力,培养学数学的兴趣,养成良好的思维品质。
理解和掌握按一定的比进行分配的意义,并进行实际应用。
把比熟练地转化成分数,将分数知识横向迁移。
多媒体课件。
一、创设情境,设疑自探
1、课件出示教材中的情境图,大班30人,小班20人。
思考:把这筐橘子分给大班和小班,怎么分合理?学生商量分法,得出:按大班和小班的人数来分比较合理。
2、大班人数和小班人数的比是3:2,学生用小棒代替橘子分一分。
(没有告诉学生小棒的数目。)学生分好后,交流分法。
3、小结。
二、解疑合探,知识迁移
1、如果有140个橘子,按3:2分,应该怎样分?学生讨论分法,并试着解决。
2、交流方法,展示。学生可能出现的方法:
⑴、借助表格分。
⑵、发现橘子总数被平均分成了5份,大班占3份,小班占2份。先求出一份的数,再分别乘以3和2,就求出了大班和小班分的橘子个数。别占橘子总数的几分之几,最后根据分数的意义解题。
3、引导学生小结方法⑶的思路。
⑴计算分配的总份数。
⑵计算各部分占总量的几分之几。
⑶利用乘法的意义解题。
4、你喜欢哪种方法,请说明理由。
5、回忆学过的“平均分配”,可以看成几比几?
三、巩固练习,深化认识
3、完成教材第56页练一练第3题合理搭配早餐。
四、总结评价,课后延伸。
1、总结。
2、布置作业。
大班30人,小班20人。
思考:把这筐橘子分给大班和小班,怎么分合理?
3、先求出一共分成几份,再求出大班和小班分的个数分
(以上方法可借助课件演示帮助学生理解。)
比的应用教学设计比的应用教案公开课篇八
1、应用比的意义,解决按照一定的比进行分配的实际问题。
2、进一步体会比的意义,提高解决问题的能力。感受比在生活中的广泛应用。
学习重点:应用比的意义,解决按照一定的比进行分配的实际问题。
六年级学生在明晰了比与分数和除法的关系后,完全能自己找到按比分配的方法。教师在本节课中要起到启发、点拨、深化引导的作用。在教材处理上,有意由两个量的比过渡到三个量的比,旨在归纳出按比分配前提下,无论是两项或是三项,它们的分配方法是一样的。
水杯、水、鲜奶、茶、秤、课件。
1
① 我将礼物的一半给男生、另一半给女生,你们说怎么样?
② 如果你觉得不太合理,那你们认为我应当怎样分呢
③ 调查班级男女生人数
④ 假设所带礼物的数量,(不等同于人数),该怎么分呢?
⑤ 为什么这么多的分法你们都认为合理呢?,
师:因为按人数的比来分,落实到每个人手中的礼物就是一样的,这才最合理。
① 不知道有多少杯子,你建议怎么分呢?
② 依照学生的建议分杯。
教师依照学生的提议逐次分杯。分后让提议查总数的人核算分配的结果
③各种分杯建议的结果一样吗?为什么?
④这些分杯的方法哪一种最好?
师:方法没有最好,只有最适合,如果知道总的数量,就直接按比来分;如果不知道总数或不方便查总数时,我们就按比来逐次分,来确保分配的合理。
① 出示“两袋鲜奶”。直接给男生一袋、女生一袋
思考:这是平均分呢?还是按比分呢?(生答)
② 其实,平均分也是按比分的一种,这个比就是1:1。
③ 现在,我们人手一只杯子,但鲜奶只有两袋,想要全班同学都能品尝到鲜奶,你有什么好办法吗?(推出配饮品的建议)
a、 制作奶茶需要什么材料?
c、那你们想想要按着怎样的比来配呢?谁来提议一下?
d、 谁理解这个比的含义了?
e、哪一个单位最合适呢?
b、逆势提问:如果我想配制2500克 奶茶,要多少奶?多少茶?多少水呢?(板书)
想一想,你要用什么办法解决这个问题?
c、学生自己解决问题,再汇报后
方法1:联系除法
方法2:联系分数
方法3:综合方法
方法4:方程方法
c、学生自己解决问题,再汇报后
方法1:联系除法
方法2:联系分数
方法3:综合方法
方法4:方程方法
a、感觉怎么样?有什么改进的建议?
师:我这一勺是多少你才认为可以在这个比中占1份呢?
d、这时,再问要加多少水,你会怎样列式呢?(口头列式就可)
e、师小结:同学们敏捷的思维令老师欣赏,现在让我们静下心来,想一想,依据比,我们合理分配了礼物;依据比,我们又配制成醇香美味的奶茶了,这就是比在我们生活中的应用。(板书课题)
今年大学共招收1500人,其中男女生的比是4:1,现有5栋宿舍楼,该怎么分呢?(口答)
农药厂要生产新型农药,药与水的比是3:50,现在已经准备好药30千克,需要加水多少千克?(口答)
下料通知单:本月要生产教学用的三角板,有长80厘米的木料若干根,将每根木料按着5:2:1分成三部分,搭制成一个三角板,请预算每条边的长度,以便调试机器。
案情介绍:一年前,李某和王某合资开了一家文具厂,一年后工厂获利5.39 万元,两个人由于没事先约定,发生争执,提出诉讼。
① 你们想要什么条件呢?
② 材料提供:1、建厂时,李某出资5万元,王某出资3万元。
2、经营时,李某出勤10个月,王某出勤12个月。
3、创效益,李某签定6万元合同,王某签定8万元合同。
③你会选择哪一条做为判决的依据呢?具体应当怎样分配呢?
提供法律依据:合伙企业法第33条规定
⑤ 现在你知道法官怎么分配财产的了吗?
①一节课的时间很快就过去了,现在你最想说的是什么呢?(自由发挥)
② 师总结:掌握按比分的方法并不困难,难的是我们怎样运用它去解决现实中问题,只有丰富自己各项知识,才能更好的处理问题,解决问题。
比的应用教学设计比的应用教案公开课篇九
本节课在谈话中创设情境,引导学生在现实背景中让学生亲身感受按比例分配的意义,并对例题进行探索,感悟数学思想方法。在解释应用中让学生亲身经历知识的建构过程,体验解题的多样化,初步形成验证与反思的意识,从而提高自身的学科素养。
六年级上册比的应用。
1、在自主探索中理解按比例分配的意义,掌握按比例分配问题的结构特点。
2、能正确解答按比例分配问题。
3、培养解决问题的能力,促进探索精神的'养成。
掌握解答按比例分配应用题的步骤。
掌握解题的关键。
一、创设情境,感受价值
1、师:同学们,大家平时放过东西吗?
2、请大家分一分彩旗吧。(课件:植树节到了,学校准备了60棵树苗,要把它发给六一班和六二班栽植,已知两个班人数相等,如何分比较合理?)
3、在实际生活中,有时并不是把一个数量平均分配的,而是按不同量来进行分配的。
注:教师用谈话的方式,以两班分配植树任务的事情为事例,分步呈现问题情境,让学生根据有关信息发表见解,体会平均分只是一种分配方法,在现实生活中还需要更为合理的分配方式。这样结合旧知体会按比例分配的实际意义。
二、探究教学
1、探究例题
呈现例题,根据学生的建议,共同完成例1
师:请同学们独立思考,独立完成(教师巡视、指导)
(3)展示结果
根据学生的回答板书解题方法
第一种:60÷(2+3)=12(棵) 12×3=36(棵) 12×2=24(棵)
第二种:2+3=5
60×3/5=36(棵) 60×2/5=24(棵)
注:学生可能会出现以上两种解法,对于学生以前学过的归一问题的解法,老师应给予肯定。而重点放在分数乘法的意义来解答的方法上,让学生充分表达自己的想法。
2、揭示课题
师:像这样把一个数量按照一定的比进行分配,我们通常把这种分配方式叫做按比例分配。
3、思考:如何检验答案是否正确呢?
指导学生检验不但有助于学生养成良好的解题习惯,也有利于培养学生的反思意识。小结按比例分配问题的一般方法与步骤,将感性的解题经验归纳,深入理解按比例分配的关键是被分的总数和分配的比,从而突出重点,突破难点。
三、巩固练习教材做一做。
四、总结
通过这节课的学习,你有什么收获?
1、教材的编排遵循由易到难的原则。新旧知识之间的联系点,既是数学知识的生长点,又是学生认识过程中的发展点,它们用承上启下的作用。按比例分配问题是平均分问题的发展,又有它独特的价值。在谈话导入环节中,设问如何分配植树任务才合理?引发学习的思维,发现平均分之外的另一种分配方法(按比例分配),激发了学生的探究兴趣。
2、为了使学生通过解决具体问题抽象概括,形成普遍方法,指导他们及时反思十分必要。教学中先是观察分析这类题型的结构,并讨论解答此类问题的一般解题方法和步骤。接着引导学生归纳按比例分配问题的解题规律,并反思遇到不同的问题,应选择哪种方法比较合适。这样在回顾反思中理清思路,不断提升思维的层次。

一键复制