当前位置:网站首页 >> 文档 >> 最新不等式题目讲解(5篇)
范文文档
最新不等式题目讲解(5篇)
  • 时间:2025-03-20 03:11:05
  • 小编:阿楠木木qaq1
  • 文件格式 DOC
下载文章
一键复制
猜你喜欢 网友关注 本周热点 精品推荐
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?这里
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。那么我们该如何写一篇较为完美的范文呢?以下是我为大家搜集的优质范文,仅供参
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?以下是我为大家搜集的优质范文,仅供参考,一起来看看吧优质
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。相信许多人会觉得范文很难写?下面是小编为大家收集的优秀范文,供大家参考借鉴
时间就如同白驹过隙般的流逝,我们的工作与生活又进入新的阶段,为了今后更好的发展,写一份计划,为接下来的学习做准备吧!写计划的时候需要注意什么呢?有哪些格式需要注
人生天地之间,若白驹过隙,忽然而已,我们又将迎来新的喜悦、新的收获,一起对今后的学习做个计划吧。写计划的时候需要注意什么呢?有哪些格式需要注意呢?以下是小编为大
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。大家想知道怎么样才能写一篇比较优质的范文吗?
总结不仅可以帮助我们发现问题,还可以为我们提供解决问题的思路和方法。在总结的过程中,我们要注重客观性和中立性,不要带有个人偏见。6、范文里的例子可以帮助我们更好
总结是进步的必备工具之一。如何撰写一篇有逻辑性和条理性的作文是我们所关注的问题之一。下面是一些总结的范文供大家参考。服务承诺书篇一为充分展现保安品牌形象,不断提
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。那么我们该如何写一篇较为完美的范文呢?以下是小编为大家收集的优秀范文,欢迎大家分享阅读。技术服务承诺书篇一
总结可以帮助我们增强自我认知和自我管理能力,提高工作和学习效率。做好总结需要有相应的数据和事实作为依据,避免主观感觉和主观臆断。接下来是一些总结写作的案例,供您
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。大家想知道怎么样才能写一篇比较优质的范文吗?下面是小编帮大家整理的优质范文
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。大家想知道怎么样才能写一篇比较优质的范文吗?下面是小编帮大家整理的优质范文
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。相信许多人会觉得范文很难写?下面是小编为大家收集的优秀范文,供大家参考借鉴,希望可以帮助到有需要的朋友。漆
总结不仅仅是总结成绩,更重要的是为了研究经验,发现做好工作的规律,也可以找出工作失误的教训。这些经验教训是非常宝贵的,对工作有很好的借鉴与指导作用,在今后工作中
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。写范文的时候需要注意什么呢?有哪些格式需要注意呢?接
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。写范文的时候需要注意什么呢?有哪些格式需要注
为保证事情或工作高起点、高质量、高水平开展,常常需要提前准备一份具体、详细、针对性强的方案,方案是书面计划,是具体行动实施办法细则,步骤等。写方案的时候需要注意
演讲稿要求内容充实,条理清楚,重点突出。在社会发展不断提速的今天,演讲稿在我们的视野里出现的频率越来越高。那么演讲稿该怎么写?想必这让大家都很苦恼吧。下面是小编
计划是提高工作与学习效率的一个前提。做好一个完整的工作计划,才能使工作与学习更加有效的快速的完成。相信许多人会觉得计划很难写?下面是小编整理的个人今后的计划范文
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。大家想知道怎么样才能写一篇比较优质的范文吗?这里我整理了一些优秀的范文,希
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。相信许多人会觉得范文很难写?下面是小编为大家
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。写范文的时候需要注意什么呢?有哪些格式需要注意呢?下面是小编帮大家整理的优
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。大家想知道怎么样才能写一篇比较优质的范文吗?
总结对于个人的成长和职业发展至关重要。在写总结时,首先要回顾自己这段时间的学习、工作或生活经历,对所学所做进行梳理。如果你对总结写作感到困惑,不妨看看下面的范文
总结是一种对经验和教训的总结和概括,是自我提升的重要手段。为了撰写一篇较为完美的总结,我们可以分析所涉及的问题和经验,并进行归纳总结。在这里,我们为大家提供了一
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。范文怎么写才能发挥它最大的作用呢?下面是小编
总结是一面镜子,可以让我们看到自己在学习和工作生活等方面的成长和不足。怎样才能建立良好的人际关系,有效地与他人沟通和合作?想要写一篇完美的总结,不妨参考一下以下
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。范文怎么写才能发挥它最大的作用呢?这里我整理了一些优秀的范文,希望对大家有
做任何工作都应改有个计划,以明确目的,避免盲目性,使工作循序渐进,有条不紊。大家想知道怎么样才能写一篇比较优质的计划吗?下面是小编整理的个人今后的计划范文,欢迎
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。写范文的时候需要注意什么呢?有哪些格式需要注意呢?以下是小编为大家收集的优
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。那么我们该如何写一篇较为完美的范文呢?以下是小编为大家
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。相信许多人会觉得范文很难写?这里我整理了一些优秀的范文,希望对大家有所帮助
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。大家想知道怎么样才能写一篇比较优质的范文吗?
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。相信许多人会觉得范文很难写?以下是小编为大家收集的优秀
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。大家想知道怎么样才能写一篇比较优质的范文吗?以下是小
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。写范文的时候需要注意什么呢?有哪些格式需要注
为有力保证事情或工作开展的水平质量,预先制定方案是必不可少的,方案是有很强可操作性的书面计划。怎样写方案才更能起到其作用呢?方案应该怎么制定呢?下面是小编帮大家
时间过得真快,总在不经意间流逝,我们又将续写新的诗篇,展开新的旅程,该为自己下阶段的学习制定一个计划了。什么样的计划才是有效的呢?以下是小编收集整理的工作计划书
时间流逝得如此之快,前方等待着我们的是新的机遇和挑战,是时候开始写计划了。计划怎么写才能发挥它最大的作用呢?下面是小编为大家带来的计划书优秀范文,希望大家可以喜
做任何工作都应改有个计划,以明确目的,避免盲目性,使工作循序渐进,有条不紊。计划怎么写才能发挥它最大的作用呢?下面是我给大家整理的计划范文,欢迎大家阅读分享借鉴
“方”即方子、方法。“方案”,即在案前得出的方法,将方法呈于案前,即为“方案”。怎样写方案才更能起到其作用呢?方案应该怎么制定呢?接下来小编就给大家介绍一下方案
人生天地之间,若白驹过隙,忽然而已,我们又将迎来新的喜悦、新的收获,一起对今后的学习做个计划吧。我们该怎么拟定计划呢?下面我帮大家找寻并整理了一些优秀的计划书范
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。那么我们该如何写一篇较为完美的范文呢?接下来小编就给大
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。大家想知道怎么样才能写一篇比较优质的范文吗?以下是我为大家搜集的优质范文,
语言是沟通的工具,我们要注重语言的准确性和表达的清晰度,以便更好地传递我们的思想和观点。参考相关的总结范文和样本,可以帮助我们写一篇更加完美的总结。接下来是一些
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。大家想知道怎么样才能写一篇比较优质的范文吗?下面是小编帮大家整理的优质范文,仅供参考,大家一起来看看吧。市
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。范文怎么写才能发挥它最大的作用呢?下面是小编帮大家整理的优质范文,仅供参考
总结是对过去一定时期的工作、学习或思想情况进行回顾、分析,并做出客观评价的书面材料,它有助于我们寻找工作和事物发展的规律,从而掌握并运用这些规律,是时候写一份总
通过总结,我们可以反思过去的经验和教训,有助于提高自己的表现。总结要有自己的观点和见解,不要简单照搬别人的意见和论述。建议大家认真阅读以下这些总结范文,一定会对
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。范文怎么写才能发挥它最大的作用呢?下面我给大家整理了
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。范文怎么写才能发挥它最大的作用呢?下面我给大家整理了
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。范文怎么写才能发挥它最大的作用呢?以下是我为大家搜集的优质范文,仅供参考,一起来看看吧考察行程安排篇一考察
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。大家想知道怎么样才能写一篇比较优质的范文吗?
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。范文怎么写才能发挥它最大的作用呢?下面我给大
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。相信许多人会觉得范文很难写?这里我整理了一些
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。那么我们该如何写一篇较为完美的范文呢?接下来小编就给
总结可以帮助我们培养思考问题、总结经验的习惯,提高自己的学习和工作能力。写一篇完美的总结需要先明确总结的目的和主题。总结范文中的案例和观点具有一定的实用性和参考
总结可以帮我们梳理思绪,优化方法,更好地实现个人和团队的目标。写好总结需要我们清楚地了解总结的要求和标准。如果你对总结写作感到困惑,不妨参考一下下面这些总结范文
总结是一种汲取经验和教训的方式,使我们更好地成长。总结中如何平衡事实陈述与情感表达?请大家阅读下面这些总结范文,相信会对你们的写作有所启发。产品售后服务承诺书篇
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。相信许多人会觉得范文很难写?这里我整理了一些优秀的范文,希望对大家有所帮助
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。写范文的时候需要注意什么呢?有哪些格式需要注
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。范文怎么写才能发挥它最大的作用呢?下面是小编为大家收
在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。范文怎么写才能发挥它最大的作用呢?以下是小编为大家收
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。大家想知道怎么样才能写一篇比较优质的范文吗?接下来小编就给大家介绍一下优秀的范文该怎么写,我们一起来看一看
通过总结,我们可以从错误中吸取教训,避免犯同样的错误。写总结时,可以从事物发展的全局、重要事件和个人成长等方面进行思考。总结范文可以激发我们的写作灵感,帮助我们
总结是在一段时间内对学习和工作生活等表现加以总结和概括的一种书面材料,它可以促使我们思考。写总结时可以参考一些优秀的范文,以获得更多的写作思路和技巧。以下是一些
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。相信许多人会觉得范文很难写?下面是小编帮大家整理的优质范文,仅供参考,大家
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。那么我们该如何写一篇较为完美的范文呢?以下是
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。那么我们该如何写一篇较为完美的范文呢?以下是小编为大家收集的优秀范文,欢迎
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。大家想知道怎么样才能写一篇比较优质的范文吗?下面是小编
为了确定工作或事情顺利开展,常常需要预先制定方案,方案是为某一行动所制定的具体行动实施办法细则、步骤和安排等。那么我们该如何写一篇较为完美的方案呢?以下是小编给
时间就如同白驹过隙般的流逝,我们又将迎来新的喜悦、新的收获,让我们一起来学习写计划吧。优秀的计划都具备一些什么特点呢?又该怎么写呢?这里给大家分享一些最新的计划
在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。大家想知道怎么样才能写一篇比较优质的范文吗?以下是我
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。相信许多人会觉得范文很难写?下面我给大家整理了一些优
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。大家想知道怎么样才能写一篇比较优质的范文吗?
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。范文怎么写才能发挥它最大的作用呢?下面我给大家整理了一些优秀范文,希望能够帮助到大家,我们一起来看一看吧。
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。大家想知道怎么样才能写一篇比较优质的范文吗?这里我整理了一些优秀的范文,希望对大家有所帮助,下面我们就来了
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。范文书写有哪些要求呢?我们怎样才能写好一篇范
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?以下是我为大家搜集的优质
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。那么我们该如何写一篇较为完美的范文呢?下面我给大家整理了一些优秀范文,希望
时间流逝得如此之快,我们的工作又迈入新的阶段,请一起努力,写一份计划吧。计划书写有哪些要求呢?我们怎样才能写好一篇计划呢?下面是小编带来的优秀计划范文,希望大家
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。范文书写有哪些要求呢?我们怎样才能写好一篇范
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。范文怎么写才能发挥它最大的作用呢?下面是小编为大家收
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。那么我们该如何写一篇较为完美的范文呢?接下来小编就给大家介绍一下优秀的范文该怎么写,我们一起来看一看吧。背
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。范文怎么写才能发挥它最大的作用呢?下面我给大家整理了一些优秀范文,希望能够
好的计划能够带来明确的方向感,避免迷失在日常琐碎中。一个好的计划应该能够适应环境的变化,具备一定的灵活性。如果你想了解更多关于计划的内容,可以阅读以下范文,获取
时间过得真快,总在不经意间流逝,我们又将续写新的诗篇,展开新的旅程,该为自己下阶段的学习制定一个计划了。那关于计划格式是怎样的呢?而个人计划又该怎么写呢?以下我
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。范文书写有哪些要求呢?我们怎样才能写好一篇范
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。那么我们该如何写一篇较为完美的范文呢?下面是小编帮大
在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。写范文的时候需要注意什么呢?有哪些格式需要注意呢?这
作为一位杰出的老师,编写教案是必不可少的,教案有助于顺利而有效地开展教学活动。怎样写教案才更能起到其作用呢?教案应该怎么制定呢?下面是我给大家整理的教案范文,欢
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。写范文的时候需要注意什么呢?有哪些格式需要注意呢?下面
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?以下
为了确保事情或工作有序有效开展,通常需要提前准备好一份方案,方案属于计划类文书的一种。方案对于我们的帮助很大,所以我们要好好写一篇方案。以下是我给大家收集整理的
计划是提高工作与学习效率的一个前提。做好一个完整的工作计划,才能使工作与学习更加有效的快速的完成。那么我们该如何写一篇较为完美的计划呢?下面是小编为大家带来的计
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?接下来小编就给大家介绍一
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。写范文的时候需要注意什么呢?有哪些格式需要注意呢?这里
在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。写范文的时候需要注意什么呢?有哪些格式需要注意呢?下
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?以下

最新不等式题目讲解(5篇)

格式:DOC 上传日期:2025-03-20 03:11:05
最新不等式题目讲解(5篇)
    小编:阿楠木木qaq1

范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。写范文的时候需要注意什么呢?有哪些格式需要注意呢?这里我整理了一些优秀的范文,希望对大家有所帮助,下面我们就来了解一下吧。

不等式题目讲解篇一

第1讲 不等式的证明

一、辅导内容

不等式证明的方法与技巧

二、学习指导

不等式的证明主要研究对绝对不等式的变形、化简。其原理是利用不等式的传递性从不等式的左端或右端适当地放大(或缩小)为右端或左端。不等式的性质是不等式证明的基础。

不等式证明的常规方法有:比较法、综合法、分析法。比较法的研究对象通常是代数不等式,如整式不等式,分式不等式;综合法主要是用基本不等式及不等式的性质研究非负实数集内的绝对值不等式;当因题目条件简单或结论形式复杂而无法对不等式下手时,可考虑用分析法,但应注重格式,注意规范化用语。

根据题目条件或结论的特殊形式,证明不等式还有一些技巧方法;换元法、反证法、放缩法、判别式法等。

三、典型例题

【例1】 设a,b∈r,求证:a+b≥ab+a+b-1。

解题思路分析:

思路一:这是一个整式不等式,可考虑用比较法,在配方过程应体现将a或b看成主元的思想,在这样的思想下变形,接下来的配方或因式分解相对容易操作。

作差δ=a+b-ab-a-b+1=a-(b+1)a+b-b+1=(a =(ab123)(b1)2≥0 2

422222

222

b123233)bb 2424思路二:注意到不等式两边式子a+b与ab的结构特点,联想到基本不等式;为了得到左边的a与b项,应用增减项法变形。增加若干项或减少若干项的技巧在本节应用得较为普遍。

因a+b≥2ab,a+1≥2a,b+1≥2b 三式同向相加得:a+b≥ab+a+b-1 思路三:在思路一中,作差δ后得到关于a的二次三项式,除了用配方法,还可以联系二次函数的知识求解。记f(a)=a-(b+1)a+b-b+1 因二次项系数为正,△=(b+1)-4(b-b+1)=-3(b-1)≤0 ∴ f(a)≥0 【例2】 已知0

根据已知条件:a+b+c+abc>0,首先将题目结论改造为1+ab+bc+ca≥a+b+c+abc,即1+ab+bc+ca-a-b-c-abc≥0。这样的化简或变形(变形的目的也是化简)在绝大多数解题中都是需要的),而且是必要的。在变形过程中通常注意前后问题的等价性。

其次在对欲证不等式左边的化简时,应从已知条件中寻找思路:由a≤1,b≤1,c≤1得:1-a≥0,1-b≥0,1-c≥0,因此在对1+ab+bc+ca-a-b-c-abc因式分解时,应向1-a,1-b,1-c这三个因式靠拢,这样才便于判断整个因式的符号。由轮换式的特点,找准1-a,1-b,1-c中的一个因式即可。

1+ab+bc+ca-a-b-c-abc =(1-a)+b(a-1)+c(a-1)+bc(1-a)=(1-a)(1-b-c+bc)=(1-a)(1-b)(1-c)≥0 【例3】 设a=a+d,b=b+c,a,b,c,d∈r+,ad=bc,a=max{a,b,c,d},试比较a与b的大小。

解题思路分析:

因a、b的表达形式比较简单,故作差后如何对因式进行变形是本题难点之一。利用等式ad=bc,借助于消元思想,至少可以消去a,b,c,d中的一个字母。关键是消去哪个字母,因条件中已知a的不等关系:a>b,a>c,a>d,故保留a,消b,c,d中任一个均可。

由ad=bc得:dbcbcbcac a-b=a+d-(b+c)=a bcabaaa1abbcca≥1。

abcabc

22222222222

=abc(ab)(ab)(ac)0 aabc d(bd)(cd)bcbccd a-b=adbc dbc(bd)=ddd下面是判断b-d与c-d的符号,即比较a、c与d的大小:应从条件a=max{a,b,c,d}及ad=bc出发才挖掘隐藏条件。又:若不慎消去了a,该怎么办呢? 由ad=bc得:aac bdac∵ a>b>0 ∴ >1 即 >1 ∴ c>d,c-d>0 bd由ad=bc得:同理b-d>0 ∴ a-b>0 【例4】 a,b,c∈r,求证:a+b+c≥(a+b+c)。

解题思路分析:

不等号两边均是和的形式,利用一次基本不等式显然不行。不等号右边为三项和,根据不等号方向,应自左向右运用基本不等式后再同向相加。因不等式左边只有三项,故把三项变化六项后再利用二元基本不等式,这就是“化奇为偶”的技巧。

11左=(2a42b42c4)[(a4b4)(b4c4)(c4a4)]

21≥(2a2b22b2c22c2a2)a2b2b2c2c2a2

2发现缩小后没有达到题目要求,此时应再利用不等式传递性继续缩小,处理的方法与刚才类似。a2b2b2c2c2a21(2a2b22b2c22c2a2)24

441[(a2b2b2c2)(b2c2c2a2)(c2a2a2b2)]21≥(2ab2c2abc22a2bc)ab(abc)2

【例5】(1)a,b,c为正实数,求证:

111111; ≥

abcabbcaca2b2c2abc(2)a,b,c为正实数,求证:≥。bcacab2解题思路分析:

(1)不等式的结构与例4完全相同,处理方法也完全一样。

(2)同学们可试一试,再用刚才的方法处理该题是行不通的。注意到从左向右,分式变成了整式,可考虑在左边每一个分式后配上该分式的分母,利用二元基本不等式后约去分母,再利用不等式可加性即可达到目的。试一试行吗? a2

【例6】 x,y为正实数,x+y=a,求证:x+y≥。

2解题思路分析:

思路一;根据x+y和x+y的结构特点,联想到算术平均数与平方平均数之间的不等关系。x2y2xy∵ ≤

22(xy)2a2∴ xy≥ 222222思路二:因所求不等式右边为常数,故可从求函数最小值的角度去思考。思路一所用的是基本不等式法,这里采用消元思想转化为一元函数,再用单调性求解。换元有下列三种途径:

途径1:用均值换元法消元: 令 xaam,ym 22

a2aaa2222则 xy(m)(m)2m≥

2222途径2:代入消元法: 22y=a-x,0222222222途径3:三角换元法消元:

22令 x=acosθ,y=asinθ,θ∈(0,]

222244222222则 x+y=a(cosθ+sinθ)=a[(sinθ+cosθ)-2sinθcosθ]

a211222 =a[1-2(sin2θ)]=a(1-sin2θ)≥

222 注:为了达到消元的目的,途径1和途径3引入了适当的参数,也就是找到一个中间变量表示x,y。这种引参的思想2是高中数学常用的重要方法。

(ab)2ab(ab)2ab

【例7】 已知a>b>0,求证:。8a28b解题思路分析:

所证不等式的形式较复杂(如从次数看,有二次,一次,1次等),难以从某个角度着手。故考虑用分析法证明,即2执果索因,寻找使不等式成立的必要条件。实际上就是对所证不等式进行适当的化简、变形,实际上这种变形在相当多的题目里都是充要的。

abab2ab(ab)2ab 222ab(ab)(ab)(ab)2(ab)2(ab)2(ab)2(ab)2所证不等式可化为

8a28b∵ a>b>0 ∴ ab ∴ ab0

(ab)2(ab)21∴ 不等式可化为:

4a4b2(ab)4aab2a即要证 只需证

24b(ab)2bab在a>b>0条件下,不等式组显然成立 ∴ 原不等式成立

【例8】 已知f(x)=解题思路分析:

不等号两边字母不统一,采用常规方法难以着手。根据表达式的特点,借助于函数思想,可分别求f(a)及g(b)=b-4b+的最值,看能否通过最值之间的大小关系进行比较。

22x34x8,求证:对任意实数a,b,恒有f(a)

211.2112f(a)2a3482a82a(2)8a282a82a≤

822a82a8422

令 g(b)=b-4b+∵ 11323 g(b)=(b-2)+≥

22232 ∴ g(b)>f(a)2注:本题实际上利用了不等式的传递性,只不过中间量为常数而已,这种思路在两数大小比较时曾讲过。由此也说明,实数大小理论是不等式大小理论的基础。

【例9】 已知a,b,c∈r,f(x)=ax+bx+c,当|x|≤1时,有|f(x)|≤1,求证:

(1)|c|≤1,|b|≤1;

(2)当|x|≤1时,|ax+b|≤2。

解题思路分析:

这是一个与绝对值有关的不等式证明题,除运用前面已介绍的不等式性质和基本不等式以外,还涉及到与绝对值有关的基本不等式,如|a|≥a,|a|≥-a,||a|-|b||≤|a±b|≤|a|+|b|,|a1±a2±„±an|≤|a1|+|a2|+„+|an|。就本题来说,还有一个如何充分利用条件“当|x|≤1时,|f(x)|≤1”的解题意识。

从特殊化的思想出发得到: 令 x=0,|f(0)|≤1 即 |c|≤1 当x=1时,|f(1)|≤1;当x=-1时,|f(-1)|≤1 下面问题的解决试图利用这三个不等式,即把f(0),f(1),f(-1)化作已知量,去表示待求量。∵ f(1)=a+b+c,f(-1)=a-b+c 1∴ b[f(1)f(1)] 2111∴ |b||f(1)f(1)|≤[|f(1)||f(1)|]≤(11)≤1 222(2)思路一:利用函数思想,借助于单调性求g(x)=ax+b的值域。

2当a>0时,g(x)在[-1,1]上单调递增 ∴ g(-1)≤g(x)≤g(1)∵ g(1)=a+1=f(1)-f(0)≤|f(1)-f(0)|≤|f(1)|+|f(0)|≤2 g(-1)=-a+b=f(0)-f(-1)=-[f(-1)-f(0)]

≥-|f(-1)-f(0)|≥-[|f(-1)|+|f(0)|]≥-2 ∴-2≤g(x)≤2 即 |g(x)|≤2 当a<0时,同理可证。思路二:直接利用绝对值不等式

为了能将|ax+b|中的绝对值符号分配到a,b,可考虑a,b的符号进行讨论。当a>0时

|ax+b|≤|ax|+|b|=|a||x|+|b|≤|a|+|b|≤a+|b| 下面对b讨论

① b≥0时,a+|b|=a+b=|a+b|=|f(1)-f(0)| ≤ |f(1)|+|f(0)|≤2; ② b<0时,a+|b|=a-b=|a-b|=|f(-1)-f(0)|≤|f(-1)|+f(0)|≤2。∴ |ax+b|≤2 当a<0时,同理可证。

评注:本题证明过程中,还应根据不等号的方向,合理选择不等式,例如:既有|a-b|≥|a|-|b|,又有|a-b|≥|b|-|a|,若不适当选择,则不能满足题目要求。

同步练习

(一)选择题

1、设a,b为正数,且a+b≤4,则下列各式一定成立的是()1111111≤ b、≤≤ ab44ab211111c、≤≤1 d、≥1 2ababa、2、已知a,b,c均大于1,且logac·logbc=4,则下列各式中一定正确的是()a、ac≥b b、ab≥c c、bc≥a d、ab≤c

3、设m不等于n, x=m-mn y=nm-n,则x , y的大小关系为()

a、x>y b、x=y c、y>x d、与m ,n的取植有关

43344、已知a,b是不相等的正数,在a、b之间插入两组数:x1,x2,„,xn和y1,y2,„,yn,b成等比数列,并给出下列不等式:

① ② 1ab2(x1x2xn)ab()n21nn(x1x2xn)ab2

③ y1y2ynab ④ y1y2ynnabab2()22那么,其中为真命题的是()

a、①③ b、①④ c、②③ d、②④

5、已知a,b,c>0,且a+b>c,设m=

abc,n=,则mn的大小关系是 4abc4ca、m>n b、m=n c、m

6、已知函数f(x)=-x-x,x1,x2,x3∈r,且x1+x2>0,x2+x3>0,x3+x1>0,则f(x1)+f(x2)+f(x3)的值()

a、一定大于零 b、一定小于零 c、一定等于零 d、正负都有可能

111117、若a>0,b>0,x(),y,z,则()

2abababa、x≥y>z b、x≥z>y c、y≥x>z d、y>z≥x

8、设a,b∈r,下面的不等式成立的是()a、a+3ab>b b、ab-a>b+ab c、(二)填空题

9、设a>0,b>0,a≠b,则ab与ab的大小关系是__________。

10、若a,b,c是不全相等的正数,则(a+b)(b+c)(c+a)______8abc(用不等号填空)。

11、设n个正数x1,x2,„,xn的算术平均数是x,若a是不等于x的任意实数,并记ab

ba22

3aa12d、a+b≥2(a-b-1)bb1p(x1x1)2(x2x)2(xnx)2,q(x1a)2(x2a)2(xna)2,则p与q大小关系是__________。

1t112、当00且t≠1时,logat与loga的大小关系是__________。

22nnn13、若a,b,c为rt△abc的三边,其中c为斜边,则a+b与c(其中n∈n,n>2)的大小关系是________________。

(三)解答题

14、已知a>0,b>0,a≠b,求证:ababba。

15、已知a,b,c是三角形三边的长,求 证:1abc2。bcacab1116、已知a≥0,b≥0,求证:(ab)2(ab)≥aaba。

243317、已知a,b为正数,a+b=2,求证:a+b≤2。

111a8b8c818、若a,b,c为正数,求证:≤。

abca3b3c3112519、设a>0,b>0,且a+b=1,求证:(a)(b)≥。

ab420、已知a+b+c>0,ab+bc+ca>0,abc>0,求证:a,b,c全为正数。

第2讲 含有绝对值的不等式

一、辅导内容

含有绝对值的不等式证明

二、学习指导

1、绝对值的性质

(1)基本性质:①x∈r时,|x|≥x,|x|≥-x;②|x|a,或x<-ax>a。

(2)运算性质:|ab|=|a||b|,|a|a||,||a|-|b||≤|a±b|≤|a|+|b|,|a1±a2±„+an|≤|a1|+|a2|+„+|an|。b|b|

222(3)几何意义:|x-a|表示数轴上数x,a对应的两点之间的距离。

2、与绝对值有关的不等式的证明

其方法仍是证明一般不等式的方法,如比较法、综合法、分析法等,但它除了涉及一般不等式的性质外,还经常用到刚才所介绍的绝对值的性质,特别是||a|-|b||≤|a|±|b|这一条性质。

在利用绝对值的性质时,应根据不等号的方向进行合理的选择。

3、含绝对值不等式的证明与解法有较大的差异,在解不等式中,主要是考虑如何去掉绝对值符号;而在证明中,一般不提倡去掉绝对值符号,当然,少数题目例外。

三、典型例题

【例1】 设|a|<ε,|a-b|<2ε,求证:|b|<3ε。

解题思路分析:

根据解题的“结论向条件靠拢”的原则,本题主要思考如何用a,a-b表示b,从而利用|a|及|a-b|的条件得到|b|的范围。

∵ b=a-(a-b)∴ |b|=|a-(a-b)|≤|a|+|a-b|<ε+2ε=3ε

注:本题还涉及到了化简变形中的整体思想,即将a-b看作一个整体。

实际上根据|a-b|的结构特点,也可用绝对值的基本不等式对其缩小:||a|-|b||≤|a-b|,关键是不等式的左端是选择|a|-|b|,还是|b|-|a|,尽管两个不等式都成立,但由本题的消元要求,应消去a,保留b,故选|b|-|a|≤|a-b|。

∴ |b|-|a|<2ε 又 |a|<ε

∴ 两不等式同向相加得|b|<3ε

【例2】 已知f(x)=x-x+c,|x-a|<1,a,c∈r,求证:|f(x)-f(a)|<2(|a|+1)。

求证:|f(x)-f(a)|<2(|a|+1)解题思路分析:

因f的对应法则已知,故首先对不等式左边化简:|f(x)-f(a)|=|x-x+c-(a-a+c)|=|x-a-x+a|。接下来的变形向条件|x-a|<1靠拢,即凑出因式x-a:

|f(x)-f(a)|=|x-a-x+a|=1(x-a)(x+a)-(x-a)|=|x-a||x+a-1|<|x+a-1| 下一步化简有两种途径:从结论向条件凑,或从条件向结论凑。

途径一:|x+a-1|=|x-a+2a-1|≤|x-a|+|2a-1|≤|x-a|+|2a|+1<1+2|a|+1=2(|a|+1)途径二:|x+a-1|≤|x|+|a-1|≤|x|+|a|+1 又 |x-a|≥|x|-|a| ∴ |x|-|a|<1 ∴ |x|<|a|+1 ∴ |x+a-1|≤|x|+|a|+1<|a|+1+|a|+1=2(|a|+1)注:途径二在利用基本不等式|x-a|≥||x|-|a||时,涉及到是选择|x-a|≥|x|-|a|,还是|x-a|≥|a|-|x|,应根据与|x|有关的不等号方向选择。本题是要将|a|放大,故选择|x-a|≥|x|-|a|。

|ab||a||b| 【例3】 求证≤。

1|ab|1|a|1|b|解题思路分析:

思路一:三个分式的结构特点完全一致,可构造函数f(x)=2

222

x,利用f(x)的单调性放缩。1xx(x≥0)1x易证f(x)在[0,+∞)上递增 令f(x)=∵ 0≤|a+b|≤|a|+|b| ∴ f(|a+b|)≤f(|a|+|b|)

∴ |ab||a||b||a||b|≤

1|ab|1|a||b|1|a||b|1|a||b||a||a||b||b|,1|a||b|1|a|1|a||b|1|b||a||b||a||b|

1|a||b|1|a||b|1|a|1|b|根据结论要求,采用缩小分母增大分式的放缩技巧 ∵ ∴

∴ 由不等式传递性,原不等式成立

思路二:用|a+b|≤|a|+|b|进行放缩。但不等式左边分式的分子、分母均含有|a+b|,必须转化为只有一项含|a+b|的分式。

∵ |a+b|≤|a|+|b| 11∴ ≥

|ab||a||b|

111|ab|111|ab|≤111|a||b||a||b|

1|a||b|下同思路一。

【例4】 已知a,b,x∈r,ab≥0,x≠0,求证|ax解题思路分析:

本题考虑去绝对值符号后进行证明。

b|≥2ab。xb思路一:不等号两边均为非负,原不等式(ax)2≥(2ab)2

xb2即 ax22ab≥4ab

x22b2∵ ax2≥2a2b22ab

x22b2∴ ax2≥4ab

x2ab22b|≥0,|ax|≥0,显然成立 ab当a≠0且b≠0时,由a、b>0知,(ax)()>0

x思路二:当a=0,或b=0时,原不等式为|∴ |axbbb||ax|||≥2|ax|||2|ab|2ab

xxx2 【例5】 已知f(x)=x+ax+b,(1)求f(1)-2f(2)+f(3);(2)证明|f(1)|,|f(2)|,|f(3)|中至少有一个不小于解思路分析:

(1)f(1)-f(2)+f(3)=2;问题(2)的求解想办法利用(1)的结论。

这是一个存在性的命题,因正面情形较多,难以确定有几个,故采用反证法。

假设|f(x)|<

1。2111,|f(2)|<,|f(3)|< 22211122 222 则 |f(1)-2f(2)+f(3)|≤|f(1)|+2|f(2)|+|f(3)|< 但 |f(1)-2f(2)+f(3)|=2 由此得到矛盾。

【例6】 已知a,b∈r,|a|>1,|b|>1,且a≠b,求证:| 解题思路分析:

本题用分析法较为方便。

1ab|>1。ab1ab1ab2|1()1(1ab)2(ab)21a2b2a2b20 ab ab(1a2)(1b2)0|∵ |a|>1,|b|>1 ∴ a>1,b>1 ∴ 1-a<0,1-b<0 ∴(1-a)(1-b)>0 ∴ 原不等式成立

【例7】 设x,y∈r,x+y≤1,求证:|x+2xy-y|≤2。

解题思路分析: 也许有同学会这样解:

|x+2xy-y|≤|x|+|2xy|+|-y|=x+y+2|xy|≤x+y+x+y=2(x+y)≤2 但放缩过度,不能满足本题要求。

根据条件“平方和”的特征,考虑用三角换元法: 令 x=rcosθ,y=rsinθ,|r|≤1 则 |x+2xy-y|=2r|sin(2θ+222222

222

222

22222222)|≤2r≤2 4同步练习

(一)选择题

1、已知函数f(x)=-2x+1对任意正数ε,使得|f(x1)-f(x2)|< ε成立的一个充分但不必要条件是

 c、|x1-x2|< d、|x1-x2|>ε 242、a,b是实数,则使|a|+|b|>1成立的充分不必要条件是 a、|x1-x2|<ε b、|x1-x2|

3、设a,b|a-b|c、|a-b|<||a|-|b||

d、|a-b|<|a|+|b|

4、若a,b∈r,且|a+b|=|a|+|b|,则

a0a0a、 b、ab0 c、 d、ab0

b0b011且|b|≥ c、a≥1 d、b<-1 225、已知h>0,命题甲;两个实数a,b满足|a-b|<2h;命题乙:两个实数a,b满足|a-1|

c、甲是乙的充要条件 d、甲既不是乙的充分条件又不是乙的必要条件

|ab|

6、不等式≤1成立的充要条件是

|a||b|a、ab≠0 b、a+b≠0 c、ab>0 d、ab<0

7、设a,b∈r,则|a|<1且|b|<1是ab+1>a+b的 a、充分非必要条件 b、必要非充分条件 c、充要条件 d、既非充分又非必要条件

8、已知函数f(x)=-2x+1,对于任意正数ε,使得|f(x1)-f(x2)|<ε成立的一个充分非必要条件是 a、|x1-x2|<ε b、|x1-x2|<

(二)填空题

9、若|x+y|=4,则xy最大值是________。

|a||b|

10、若a≠b,a≠0,b≠0,则______|a||b|(填>、≥、<、≤)。|b||a|

11、a,b∈r,则|a+b|-|a-b|与2|b|的大小关系是______________。

12、关于x的不等式|x+2|+|x-1|

22

c、|x1-x2|< d、|x1-x2|> 23

3(三)解答题

2

13、已知|a+b|<,|a-b|<,求证|a|<。

233cbcb|x1|,|x2|。baba15、已知f(x)在[0。1]上有意义,且f(0)=f(1),对于任意不同的x1,x2∈[0,1],都有|f(x1)-f(x2)|<|x1-x2|成立,14、已知二次方程ax+bx+c=0(a>0,b>0,c>0)的两个实根x1,x2,求证:2求证:|f(x1)-f(x2)<1。2a2b2|a||b|

16、求证:≥(a,b∈r)。

2217、已知a,b∈r,|a|<1,|b|>1,求证:|1+ab|<|a+b|。

18、已知|a|<1,|b|<1,|c|<1,求证:

(1)|abc|1;

|1abc|(2)a+b+c

19、求证

220、已知a,b∈r,且|a|+|b|<1,求证方程x+ax+b=0的两个根的绝对值都小于1。

21、在一条笔直的街道上住着7位小朋友,他们各家的门牌分别为3号,6号,15号,19号,20号,30号,39号,这7位小朋友准备凑在一起玩游戏,问地点选在哪位小朋友家,才能使大家所走的路程和最短?(假定数字相连的两个门牌号码的房子间的距离相等)。

不等式题目讲解篇二

“登峰”辅导伴你行

专题

1、不等式性质及解不等式讲义

类型

一、不等式性质

基本知识点要求:能熟练应用不等式性质.题型

1、不等式性质考查.例1.若,满足

2

2,则2的取值范围是(不等式性质)

b,则2ab的取值范围是的范围.(不等式性质)练习1.若a,b满足2a3and1b4且aa2例2.已知1a3and2b4,求ab,ab,b

练习2.已知1a3and2b4,求ab,ab,a2b的范围.(不等式性质)

2ab4,求2a3b的取值范围.题型

2、不等式性质+待定系数法以及整体构造思想构造题.例3.已知1ab3and

练习3.已知1xy1,1xy3,求3xy的取值范围.练习4.已知函数f(x)ax2bx(a0)满足1f(1)2,2f(1)5,求f(3)的取值范围.类型

二、解不等式

基本知识点要求:(1)知道不等式、方程及函数之间的关系;

(2)知道不等式解与方程的根之间的关系;

(3)能用数轴标根法求解不等式.题型

1、解不等式基本知识考查.例4.解不等式:2xx30.练习5.解不等式:xx60.例5.解不等式:22x10.x2

x23x2x10.练习7.20.练习6.解不等式:2xx2x3

总结高次不等式求解步骤:(1)最高次系数化正;(2)分式不等式化整式;(3)因式分解;(4)数轴标根

法写出答案.题型

2、解含参不等式.例6.解关于x的不等式:(x2)(ax2)0.练习8.关于x的不等式axb0的解集为1,,求

练习9.解关于x的不等式:x(1a)axa0.总结:(自己填写)

会当凌绝顶,一览众山小——成功者的领地.江西省、南昌市、西湖区

联系电话:***徐(数学老师)23axb0的解集.x2

不等式题目讲解篇三

不等式讲义ⅱ

1、排序不等式:anan1a1,bnbn1b1,则:

n

n

k

n

k

a

k

1bk

a

k1

bik

a

k1

k

bnk1(其中i1,i2,,in是1,2,,n的一个排列)

212

1例1:x,y,zr,求证:○

yzx

zxy

xyz

2xyz;○

x

yz

y

zx

z

xy

x

y

z102、均值不等式:mmaxa1,a2,,an,mmina1,a2,,an,则:

a1a2an

n

m

a1a2an

n

a1a2an

n

1a

11a2



1an

m

aaax

,注:记fxn

x

1x2xn

以上不等式即:ff2f1f0f1f 可猜测fx是单增函数,这就是幂均值不等式。

1例1○1;○2x,y,zr,且xyz1求:s例2:○

3x23y23z2

txy2z3的最大值。例3:求ft48t

1t

3,t0的最小值。

例4:a,br,ab1求sa

11

b的最小值。ab

22

3、柯西不等式:akbkakbk

k1k1k1

n

akk1

n

nnn

n

最重要的变形:

k1

akbk

,(bi0)当且仅当a1:a2::anb1:b2::bn时取等。

b

k12

k

例5:求sxyyx的最大值。

a

1例6:a1,b1,求证:○

b1

b

a1

28;○

a

a1

b

b1

8。

例7:x1,y1,求证:

例8:,为锐角,且

11x

11y

21xy

cossin

sincos

1,求证:

例9:a,b,cr,abc1,求证:

1abc

1bca

1cab

例10:a,b,c,d,e都是实数,且abcde8,a2b2c2d2e216求e的取值范围。

nakk1

n

n

通过以上例子,我们感受到了柯西不等式的推论:

k1

akbk

非常好用,我们把它

b

k1

k

推广。以下给出几个引理或定理,它们的证明你可以在教程中找到。切比雪夫不等式:

1

10aaa,0bbb,则:akbk○12n12n

nk1n

1

b1,则:akbk

nk1n

n

n

1

aknk11

aknk1

n

nn

b

k1n

k

 

20aaa,0bb○12nnn1

n

bk k1

1x1,nn,则:1x1nx 贝努力不等式:○

2x1,且x0,r1或r0,则:1x1rx○

r

3x1,且x0,0r1,则:1x1rx○

r

赫尔德不等式:ai,bir,p0,q1,1p

1q

1,则:

n

pqpq1当p1有:○ababkkkk

k1k1k1

n

n

p

n

nn

qpq2当0p1有:○akbkakbk

k1k1k1

n

1当m0或m1,则:权方和不等式:xi,yir,○

k1

xk

m1m

yk

n

xkk1

n

m1

ykk1

m1

m

n

2当1m0,则:○

k1

xk

m1m

k

y

nxkk1

n

ykk1

m

q

注:当且仅当x1:x2::xny1:y2::yn时取等。证明时只需令:xkakbk,ykbk

pm1,直接运用赫尔德不等式。

nakk1bkk1

n

p

n

推论:ai,bir,p,qn,pq,则:

k1



akb

p

qk

n

1qp

q

注:证明可参考教程p311习题11

1例11:a,b,cr,且abc3,求证:○

1 12ab12bc12ca11132○

1ab1bc1ca2

222

例12:a,b,cr,求证:

abc

bca

cab

abc

例13:a,b,cr,求证:

aa8bc

bb8ca

cc8ab

1

例14:a,b,cr,且abc1求证:

例15:a,b,cr,求证:

abc

a1bc

b1ca

c1ab

910

bca

cab

1112 abc

n

例16:已知:a1,a2,,an是两两互异的正整数,求证:

k1

akk

n

k1

1k

不等式题目讲解篇四

不等式的证明方法

一、比较法

1.求证:x2 + 3 > 3x

2.已知a, b, m都是正数,并且a < b,求证:ama bmb

ab

23.已知a, b都是正数,并且a  b,求证:a5 + b5 > a2b3 + a3b2作商法1.设a, b  r,求证:ab(ab)+ababba

二、综合法

1.综合法:利用某些已经证明过的不等式(例如算术平均数与几何平均数定理)和不等式的性质推导出所要证明2.用综合法证明不等式的逻辑关系是:ab1b2bnb

3.综合法的思维特点是:由因导果,即由已知条件出发,利用已知的数学定理、性质和公式,推出结论的一种证例题:已知a,b,c是不全相等的正数,求证:a(bc)b(ca)c(ab)6abc

例题:已知a,b,c都是正数,且a,b,c成等比数列,求证:abc(abc)

例题:a , b, cr,求证:1(abc)(***19)92(abc)() abcabbcca

2三、分析法

例题: 求证37

2例题:已知a,b,c,d∈r,求证:ac+bd≤(ab)(cd)

例题:用分析法证明下列不等式:

(1)求证:571(2)求证:x1

(3)求证:a,b,c∈r,求证:2(+2222x2x3x4(x≥4)ababcab)3(abc)2

3四、换元法 三角换元:

若0≤x≤1,则可令x = sin(0

22)或x = sin2(222若xy1,则可令x = cos , y = sin(02 代数换元:“整体换元”,“均值换元”,例题: 求证:11xx2 2

2例题: 已知x > 0 , y > 0,2x + y = 1,求证:11322 xy

2例题:若xy1,求证:|x2xyy|2222

五、放缩法与反证法

abcd2 abdbcacdbdac

1111例题:求证:22222 123n例题:若a, b, c, dr+,求证:1

例题:(用反证法)设0 < a, b, c < 1,求证:(1  a)b,(1  b)c,(1  c)a,不可能同时大于

例题:已知a + b + c > 0,ab + bc + ca > 0,abc > 0,求证:a, b, c > 0

4六、构造法

22222222例题:已知0 < a < 1,0 < b < 1,求证:ab(a1)ba(b1)(a1)(b1)2

2习题精选精解

例题:正数x,y满足x2y1,求1/x1/y的最小值。

例题:设实数x,y满足x(y1)1,当xyc0时,求c的取值范围。

例题:已知函数f(x)axbx(a0)满足1f(1)2,2f(1)5,求f(3)的取值范围。

例题:已知abc,求证:abbccaabbcca

例题:

222222222

例题:设fxxx13,实数a满足xa1,求证:fxfa2a1 2

注:式的最后一步省略了对a

0,a0,a0的详细分析,正式解题时不能省。分析过程用 a,b同号|ab||a||b|||a||b|||ab|;a,b异号|ab||a||b|||a||b|||ab| 例题:a、b、c(0,),abc1,求证:

例题:xy1,求证:2xy

例题:已知1≤x+y≤2,求证:

2222a2b2c213 2 122≤x-xy+y≤3. 22

不等式题目讲解篇五

本资料从网上收集整理

难点18 不等式的证明策略

不等式的证明,方法灵活多样,它可以和很多内容结合.高考解答题中,常渗透不等式证明的内容,纯不等式的证明,历来是高中数学中的一个难点,本难点着重培养考生数学式的变形能力,逻辑思维能力以及分析问题和解决问题的能力.●难点磁场

(★★★★)已知a>0,b>0,且a+b=1.求证:(a+1a1b254)(b+)≥.●案例探究

[例1]证明不等式112131n2n(n∈n)

*命题意图:本题是一道考查数学归纳法、不等式证明的综合性题目,考查学生观察能力、构造能力以及逻辑分析能力,属★★★★★级题目.知识依托:本题是一个与自然数n有关的命题,首先想到应用数学归纳法,另外还涉及不等式证明中的放缩法、构造法等.错解分析:此题易出现下列放缩错误:

这样只注重形式的统一,而忽略大小关系的错误也是经常发生的.技巧与方法:本题证法一采用数学归纳法从n=k到n=k+1的过渡采用了放缩法;证法二先放缩,后裂项,有的放矢,直达目标;而证法三运用函数思想,借助单调性,独具匠心,发人深省.证法一:(1)当n等于1时,不等式左端等于1,右端等于2,所以不等式成立;

(2)假设n=k(k≥1)时,不等式成立,即1+12131k11k112131k<2k,则12k2k(k1)1k1k(k1)1k1

2k1,∴当n=k+1时,不等式成立.综合(1)、(2)得:当n∈n*时,都有1+

12131n<2n.另从k到k+1时的证明还有下列证法:

2(k1)12k(k1)k2k(k1)(k1)(kk1)0,22k(k1)12(k1),k10,2k1k12k1.2k1k2k1k11k1,又如:2k12k

本资料从网上收集整理

2k1k12k1.证法二:对任意k∈n*,都有:

1k2k12k132kk11n2(kk1),2)2(nn1)2n.因此122(21)2(312131n证法三:设f(n)=2n(1*

),那么对任意k∈n 都有:

f(k1)f(k)2(k11k11k1k)1k1[2(k1)2k(k1)1](k1k1k)2

0[(k1)2k(k1)k]∴f(k+1)>f(k)因此,对任意n∈n 都有f(n)>f(n-1)>„>f(1)=1>0,∴112131n2n.xy(x>0,y>0)恒成立的a的最小值.*[例2]求使xy≤a命题意图:本题考查不等式证明、求最值函数思想、以及学生逻辑分析能力,属于★★★★★级题目.知识依托:该题实质是给定条件求最值的题目,所求a的最值蕴含于恒成立的不等式中,因此需利用不等式的有关性质把a呈现出来,等价转化的思想是解决题目的突破口,然后再利用函数思想和重要不等式等求得最值.错解分析:本题解法三利用三角换元后确定a的取值范围,此时我们习惯是将x、y与cosθ、sinθ来对应进行换元,即令x=cosθ,y=sinθ(0<θ<

2),这样也得a≥sinθ+cosθ,但是这种换元是错误的.其原因是:(1)缩小了x、y的范围;(2)这样换元相当于本题又增加了“x、y=1”这样一个条件,显然这是不对的.技巧与方法:除了解法一经常用的重要不等式外,解法二的方法也很典型,即若参数a满足不等关系,a≥f(x),则amin=f(x)max;若 a≤f(x),则amax=f(x)min,利用这一基本事实,可以较轻松地解决这一类不等式中所含参数的值域问题.还有三角换元法求最值用的恰当好处,可以把原问题转化.解法一:由于a的值为正数,将已知不等式两边平方,得:

22x+y+2xy≤a(x+y),即2xy≤(a-1)(x+y),① ② ∴x,y>0,∴x+y≥2xy,当且仅当x=y时,②中有等号成立.本资料从网上收集整理

比较①、②得a的最小值满足a-1=1,∴a2=2,a=2(因a>0),∴a的最小值是2.xxyy(xxyy)22解法二:设uxy2xyxy12xyxy.∵x>0,y>0,∴x+y≥22xy2xyxy(当x=y时“=”成立),∴xy≤1,xy的最大值是1.从而可知,u的最大值为112,又由已知,得a≥u,∴a的最小值为2.解法三:∵y>0,∴原不等式可化为

xy+1≤a

xy1,设xy=tanθ,θ∈(0,2).∴tanθ+1≤atan21;即tanθ+1≤asecθ ∴a≥sinθ+cosθ=2sin(θ+又∵sin(θ+44),4).③)的最大值为1(此时θ=由③式可知a的最小值为2.●锦囊妙计

1.不等式证明常用的方法有:比较法、综合法和分析法,它们是证明不等式的最基本的方法.(1)比较法证不等式有作差(商)、变形、判断三个步骤,变形的主要方向是因式分解、配方,判断过程必须详细叙述;如果作差以后的式子可以整理为关于某一个变量的二次式,则考虑用判别式法证.(2)综合法是由因导果,而分析法是执果索因,两法相互转换,互相渗透,互为前提,充分运用这一辩证关系,可以增加解题思路,开扩视野.2.不等式证明还有一些常用的方法:换元法、放缩法、反证法、函数单调性法、判别式法、数形结合法等.换元法主要有三角代换,均值代换两种,在应用换元法时,要注意代换的等价性.放缩性是不等式证明中最重要的变形方法之一,放缩要有的放矢,目标可以从要证的结论中考查.有些不等式,从正面证如果不易说清楚,可以考虑反证法.凡是含有“至少”“惟一”或含有其他否定词的命题,适宜用反证法.证明不等式时,要依据题设、题目的特点和内在联系,选择适当的证明方法,要熟悉各

本资料从网上收集整理

种证法中的推理思维,并掌握相应的步骤、技巧和语言特点.●歼灭难点训练

一、填空题

1.(★★★★★)已知x、y是正变数,a、b是正常数,且

axby=1,x+y的最小值为__________.2.(★★★★)设正数a、b、c、d满足a+d=b+c,且|a-d|<|b-c|,则ad与bc的大小关系是__________.3.(★★★★)若m<n,p<q,且(p-m)(p-n)<0,(q-m)(q-n)<0,则m、n、p、q的大小顺序是__________.二、解答题

4.(★★★★★)已知a,b,c为正实数,a+b+c=1.求证:(1)a2+b2+c2≥

(2)3a23b23c2≤6 5.(★★★★★)已知x,y,z∈r,且x+y+z=1,x2+y2+z2=6.(★★★★★)证明下列不等式:(1)若x,y,z∈r,a,b,c∈r,则(2)若x,y,z∈r,且x+y+z=xyz,则yzxzxyxyz+

+

12,证明:x,y,z∈[0,23]

bcax2caby2abcz≥2(xy+yz+zx)

2≥2(1x1y1z)7.(★★★★★)已知i,m、n是正整数,且1<i≤m<n.(1)证明:niaim<miain;

(2)证明:(1+m)n>(1+n)m

338.(★★★★★)若a>0,b>0,a+b=2,求证:a+b≤2,ab≤1.参考答案

难点磁场

证法一:(分析综合法)

欲证原式,即证4(ab)+4(a+b)-25ab+4≥0,即证4(ab)-33(ab)+8≥0,即证ab≤ab≥8.∵a>0,b>0,a+b=1,∴ab≥8不可能成立 ∵1=a+b≥2ab,∴ab≤证法二:(均值代换法)设a=121

4222

14或,从而得证.+t1,b=12+t2.12∵a+b=1,a>0,b>0,∴t1+t2=0,|t1|<,|t2|<

本资料从网上收集整理

(a(121a)(b21b)(1a1a22b1b(14t1t11)((222t1)112t122t2)11214t21412t2t21)t2)2212t1)(22(14t1t11)(14t2t21)2(54t2)t214t22

t2425161432t2t222252516.144t2显然当且仅当t=0,即a=b=证法三:(比较法)

12时,等号成立.∵a+b=1,a>0,b>0,∴a+b≥2ab,∴ab≤1125222214

a1b1254ab33ab8(14ab)(8ab)(a)(b)0ab4ab44ab4ab 1125(a)(b)ab4证法四:(综合法)∵a+b=1,a>0,b>0,∴a+b≥2ab,∴ab≤

14.2(1ab)125 ab4252(1ab)11391621ab1(1ab)4416 14ab即(a1a)(b1b)254

证法五:(三角代换法)

∵ a>0,b>0,a+b=1,故令a=sin2α,b=cos2α,α∈(0,2)

本资料从网上收集整理

(a1a4)(b1b)(sin4221sin22)(cos21cos222)2sincos2sincos24sin2222(4sin)164sin2sin21,4sin2413.42sin2162522(4sin2)2511244sin224sin2即得(a1a)(b1b)254.22 歼灭难点训练

一、1.解析:令ax=cos2θ,by=sin2θ,则x=asec2θ,y=bcsc2θ,∴x+y=asec2θ+bcsc2θ=a+b+atan2θ+bcot2θ≥a+b+2atan2bcot2ab2ab.答案:a+b+2ab

2.解析:由0≤|a-d|<|b-c|(a-d)2<(b-c)2(a+b)2-4ad<(b+c)2-4bc ∵a+d=b+c,∴-4ad<-4bc,故ad>bc.答案:ad>bc

3.解析:把p、q看成变量,则m<p<n,m<q<n.答案:m<p<q<n

二、4.(1)证法一:a2+b2+c2-===13131313=

13(3a2+3b2+3c2-1)[3a2+3b2+3c2-(a+b+c)2]

[3a2+3b2+3c2-a2-b2-c2-2ab-2ac-2bc] [(a-b)2+(b-c)2+(c-a)2]≥0 ∴a2+b2+c2≥

222

证法二:∵(a+b+c)=a+b+c+2ab+2ac+2bc≤a+b+c2+a2+b2+a2+c2+b2+c2 ∴3(a2+b2+c2)≥(a+b+c)2=1 ∴a2+b2+c2≥abc32222

abc3证法三:∵∴a2+b2+c2≥

abc3∴a2+b2+c2≥

13证法四:设a=+α,b=

13+β,c=

13+γ.∵a+b+c=1,∴α+β+γ=0 ∴a+b+c=(22213+α)+(2

13+β)+(2

13+γ)

本资料从网上收集整理

==1313+23(α+β+γ)+α+β+γ

13222 +α2+β2+γ2≥13

∴a2+b2+c2≥(2)证法一:同理

3a23b32(3a2)13c323(abc)9263a212,3b2,3c23c2

3a23b2∴原不等式成立.证法二:3a23b233c2(3a2)(3b2)(3c2)3

3(abc)633

∴3a23b23c2≤33<6 ∴原不等式成立.5.证法一:由x+y+z=1,x2+y2+z2=次方程得:

2y2-2(1-x)y+2x2-2x+

1212,得x2+y2+(1-x-y)2=

12,整理成关于y的一元二

=0,∵y∈r,故δ≥0

12∴4(1-x)2-4×2(2x2-2x+同理可得y,z∈[0,证法二:设x=于是==1313121323)≥0,得0≤x≤

23,∴x∈[0,23]

132+x′,y=2

+y′,z=

13132

+z′,则x′+y′+z′=0,=(13+x′)+(13+y′)+(23+z′)

+x′2+y′2+z′2+222

(x′+y′+z′)

13+x′+y′+z′≥2

+x′+

132

(yz)22=

13+

2332x′2

23故x′≤19,x′∈[-,13],x∈[0,],同理y,z∈[0,]

12证法三:设x、y、z三数中若有负数,不妨设x<0,则x2>0,=x2+y2+z2≥

本资料从网上收集整理

x+2(yz)22(1x)22x232xx212>

12,矛盾.23x、y、z三数中若有最大者大于x+

2,不妨设x>

23,则

12=x2+y2+z2≥(yz)22=x+232(1x)22=1223232x2-x+

=32x(x-)+12>;矛盾.]

cabcby22故x、y、z∈[0,6.(1)证明:((baxbaaxx22bc22xabc2z2(xyyzzx)accaz222aby2xy)(aby)(y2ybc2bcz2yz)(2cax2zx)2cbyz)(aczx)0bccababcz2(xyyzzx)(2)证明:所证不等式等介于xyz(222yzxzxyxyz)2(xyyzzx)2

2xyz[yz(yz)zx(zx)xy(xy)]2(xyyzzx)(xyz)(yzyz22222222zxzx222xyxy)22222(xyyzzx)4(xyzxyzxyz)yzyzzxzxxyxy223333332xyz2xyz2xyz2222222222yz(yz)zx(zx)xy(xy)x(yz)y(zx)z(xy)0∵上式显然成立,∴原不等式得证.7.证明:(1)对于1<i≤m,且aim =m·„·(m-i+1),ammiiammm1mi1nn1ni1,同理,immmnnnnnknmkmi由于m<n,对于整数k=1,2,„,i-1,有annii,所以ammii,即mannam

iiii(2)由二项式定理有:

2n2n(1+m)n=1+c1nm+cnm+„+cnm,2mm(1+n)m=1+c1mn+c2mn+„+cmn,本资料从网上收集整理

ii由(1)知miai>niai(1<i≤miamnm,而cm=

i!,cinani!

∴micin>nicim(1<m<n)

∴m0c0n=n0c0n=1,mc1n=nc1m=m·n,m2c2n>n2c2m,„,mmcmn>nmcmm,mm+1cm1n>0,„,mncnn>0,∴1+c1nm+c2nm2+„+cnnmn>1+c1mn+c2mn2+„+cmmnm,即(1+m)n>(1+n)m成立.8.证法一:因a>0,b>0,a

3+b3

=2,所以(a+b)3-23=a3+b3+3a

2b+3ab2

-8=3a2

b+3ab2

-6 =3[ab(a+b)-2]=3[ab(a+b)-(a3

+b3)]=-3(a+b)(a-b)2

≤0.即(a+b)3≤23,又a+b>0,所以a+b≤2,因为2ab≤a+b≤2,所以ab≤1.证法二:设a、b为方程x2-mx+n=0的两根,则abm,nab因为a>0,b>0,所以m>0,n>0,且δ=m

2-4n≥0

因为2=a3+b3=(a+b)(a2-ab+b2)=(a+b)[(a+b)2-3ab]=m(m2-3n)2所以n=m323m

将②代入①得m2-4(m2323m)≥0,3即m83m≥0,所以-m3+8≥0,即m≤2,所以a+b≤2,由2≥m 得4≥m2,又m2≥4n,所以4≥4n,即n≤1,所以ab≤1.证法三:因a>0,b>0,a3+b3=2,所以

2=a3+b3=(a+b)(a2+b2

-ab)≥(a+b)(2ab-ab)=ab(a+b)于是有6≥3ab(a+b),从而8≥3ab(a+b)+2=3a2b+3ab2+a3+b3=(a+b)3,所以a+b≤2,(下略)33证法四:因为ab2(ab32)

224aba2b2(ab)[4a4b2ab])(ab)283(ab8≥0,所以对任意非负实数a、b,有

a3b32≥(ab32)3

b3

33因为a>0,b>0,a+=2,所以1=abab32≥(2),∴ab2≤1,即a+b≤2,(以下略)

证法五:假设a+b>2,则

①②

本资料从网上收集整理

a+b=(a+b)(a-ab+b)=(a+b)[(a+b)-3ab]>(a+b)ab>2ab,所以ab<1,又a+b=(a+b)[a-ab+b]=(a+b)[(a+b)-3ab]>2(2-3ab)因为a3+b3=2,所以2>2(4-3ab),因此ab>1,前后矛盾,故a+b≤2(以下略)332

233222

全文阅读已结束,如果需要下载本文请点击

下载此文档
猜你喜欢 网友关注 本周热点 软件
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?这里
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。那么我们该如何写一篇较为完美的范文呢?以下是我为大家搜集的优质范文,仅供参
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?以下是我为大家搜集的优质范文,仅供参考,一起来看看吧优质
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。相信许多人会觉得范文很难写?下面是小编为大家收集的优秀范文,供大家参考借鉴
时间就如同白驹过隙般的流逝,我们的工作与生活又进入新的阶段,为了今后更好的发展,写一份计划,为接下来的学习做准备吧!写计划的时候需要注意什么呢?有哪些格式需要注
人生天地之间,若白驹过隙,忽然而已,我们又将迎来新的喜悦、新的收获,一起对今后的学习做个计划吧。写计划的时候需要注意什么呢?有哪些格式需要注意呢?以下是小编为大
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。大家想知道怎么样才能写一篇比较优质的范文吗?
总结不仅可以帮助我们发现问题,还可以为我们提供解决问题的思路和方法。在总结的过程中,我们要注重客观性和中立性,不要带有个人偏见。6、范文里的例子可以帮助我们更好
总结是进步的必备工具之一。如何撰写一篇有逻辑性和条理性的作文是我们所关注的问题之一。下面是一些总结的范文供大家参考。服务承诺书篇一为充分展现保安品牌形象,不断提
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。那么我们该如何写一篇较为完美的范文呢?以下是小编为大家收集的优秀范文,欢迎大家分享阅读。技术服务承诺书篇一
总结可以帮助我们增强自我认知和自我管理能力,提高工作和学习效率。做好总结需要有相应的数据和事实作为依据,避免主观感觉和主观臆断。接下来是一些总结写作的案例,供您
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。大家想知道怎么样才能写一篇比较优质的范文吗?下面是小编帮大家整理的优质范文
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。大家想知道怎么样才能写一篇比较优质的范文吗?下面是小编帮大家整理的优质范文
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。相信许多人会觉得范文很难写?下面是小编为大家收集的优秀范文,供大家参考借鉴,希望可以帮助到有需要的朋友。漆
总结不仅仅是总结成绩,更重要的是为了研究经验,发现做好工作的规律,也可以找出工作失误的教训。这些经验教训是非常宝贵的,对工作有很好的借鉴与指导作用,在今后工作中
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。写范文的时候需要注意什么呢?有哪些格式需要注意呢?接
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。写范文的时候需要注意什么呢?有哪些格式需要注
为保证事情或工作高起点、高质量、高水平开展,常常需要提前准备一份具体、详细、针对性强的方案,方案是书面计划,是具体行动实施办法细则,步骤等。写方案的时候需要注意
演讲稿要求内容充实,条理清楚,重点突出。在社会发展不断提速的今天,演讲稿在我们的视野里出现的频率越来越高。那么演讲稿该怎么写?想必这让大家都很苦恼吧。下面是小编
计划是提高工作与学习效率的一个前提。做好一个完整的工作计划,才能使工作与学习更加有效的快速的完成。相信许多人会觉得计划很难写?下面是小编整理的个人今后的计划范文
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。大家想知道怎么样才能写一篇比较优质的范文吗?这里我整理了一些优秀的范文,希
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。相信许多人会觉得范文很难写?下面是小编为大家
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。写范文的时候需要注意什么呢?有哪些格式需要注意呢?下面是小编帮大家整理的优
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。大家想知道怎么样才能写一篇比较优质的范文吗?
总结对于个人的成长和职业发展至关重要。在写总结时,首先要回顾自己这段时间的学习、工作或生活经历,对所学所做进行梳理。如果你对总结写作感到困惑,不妨看看下面的范文
总结是一种对经验和教训的总结和概括,是自我提升的重要手段。为了撰写一篇较为完美的总结,我们可以分析所涉及的问题和经验,并进行归纳总结。在这里,我们为大家提供了一
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。范文怎么写才能发挥它最大的作用呢?下面是小编
总结是一面镜子,可以让我们看到自己在学习和工作生活等方面的成长和不足。怎样才能建立良好的人际关系,有效地与他人沟通和合作?想要写一篇完美的总结,不妨参考一下以下
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。范文怎么写才能发挥它最大的作用呢?这里我整理了一些优秀的范文,希望对大家有
做任何工作都应改有个计划,以明确目的,避免盲目性,使工作循序渐进,有条不紊。大家想知道怎么样才能写一篇比较优质的计划吗?下面是小编整理的个人今后的计划范文,欢迎
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。写范文的时候需要注意什么呢?有哪些格式需要注意呢?以下是小编为大家收集的优
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。那么我们该如何写一篇较为完美的范文呢?以下是小编为大家
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。相信许多人会觉得范文很难写?这里我整理了一些优秀的范文,希望对大家有所帮助
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。大家想知道怎么样才能写一篇比较优质的范文吗?
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。相信许多人会觉得范文很难写?以下是小编为大家收集的优秀
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。大家想知道怎么样才能写一篇比较优质的范文吗?以下是小
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。写范文的时候需要注意什么呢?有哪些格式需要注
为有力保证事情或工作开展的水平质量,预先制定方案是必不可少的,方案是有很强可操作性的书面计划。怎样写方案才更能起到其作用呢?方案应该怎么制定呢?下面是小编帮大家
时间过得真快,总在不经意间流逝,我们又将续写新的诗篇,展开新的旅程,该为自己下阶段的学习制定一个计划了。什么样的计划才是有效的呢?以下是小编收集整理的工作计划书
时间流逝得如此之快,前方等待着我们的是新的机遇和挑战,是时候开始写计划了。计划怎么写才能发挥它最大的作用呢?下面是小编为大家带来的计划书优秀范文,希望大家可以喜
做任何工作都应改有个计划,以明确目的,避免盲目性,使工作循序渐进,有条不紊。计划怎么写才能发挥它最大的作用呢?下面是我给大家整理的计划范文,欢迎大家阅读分享借鉴
“方”即方子、方法。“方案”,即在案前得出的方法,将方法呈于案前,即为“方案”。怎样写方案才更能起到其作用呢?方案应该怎么制定呢?接下来小编就给大家介绍一下方案
人生天地之间,若白驹过隙,忽然而已,我们又将迎来新的喜悦、新的收获,一起对今后的学习做个计划吧。我们该怎么拟定计划呢?下面我帮大家找寻并整理了一些优秀的计划书范
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。那么我们该如何写一篇较为完美的范文呢?接下来小编就给大
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。大家想知道怎么样才能写一篇比较优质的范文吗?以下是我为大家搜集的优质范文,
语言是沟通的工具,我们要注重语言的准确性和表达的清晰度,以便更好地传递我们的思想和观点。参考相关的总结范文和样本,可以帮助我们写一篇更加完美的总结。接下来是一些
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。大家想知道怎么样才能写一篇比较优质的范文吗?下面是小编帮大家整理的优质范文,仅供参考,大家一起来看看吧。市
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。范文怎么写才能发挥它最大的作用呢?下面是小编帮大家整理的优质范文,仅供参考
总结是对过去一定时期的工作、学习或思想情况进行回顾、分析,并做出客观评价的书面材料,它有助于我们寻找工作和事物发展的规律,从而掌握并运用这些规律,是时候写一份总
通过总结,我们可以反思过去的经验和教训,有助于提高自己的表现。总结要有自己的观点和见解,不要简单照搬别人的意见和论述。建议大家认真阅读以下这些总结范文,一定会对
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。范文怎么写才能发挥它最大的作用呢?下面我给大家整理了
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。范文怎么写才能发挥它最大的作用呢?下面我给大家整理了
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。范文怎么写才能发挥它最大的作用呢?以下是我为大家搜集的优质范文,仅供参考,一起来看看吧考察行程安排篇一考察
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。大家想知道怎么样才能写一篇比较优质的范文吗?
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。范文怎么写才能发挥它最大的作用呢?下面我给大
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。相信许多人会觉得范文很难写?这里我整理了一些
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。那么我们该如何写一篇较为完美的范文呢?接下来小编就给
总结可以帮助我们培养思考问题、总结经验的习惯,提高自己的学习和工作能力。写一篇完美的总结需要先明确总结的目的和主题。总结范文中的案例和观点具有一定的实用性和参考
总结可以帮我们梳理思绪,优化方法,更好地实现个人和团队的目标。写好总结需要我们清楚地了解总结的要求和标准。如果你对总结写作感到困惑,不妨参考一下下面这些总结范文
总结是一种汲取经验和教训的方式,使我们更好地成长。总结中如何平衡事实陈述与情感表达?请大家阅读下面这些总结范文,相信会对你们的写作有所启发。产品售后服务承诺书篇
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。相信许多人会觉得范文很难写?这里我整理了一些优秀的范文,希望对大家有所帮助
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。写范文的时候需要注意什么呢?有哪些格式需要注
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。范文怎么写才能发挥它最大的作用呢?下面是小编为大家收
在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。范文怎么写才能发挥它最大的作用呢?以下是小编为大家收
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。大家想知道怎么样才能写一篇比较优质的范文吗?接下来小编就给大家介绍一下优秀的范文该怎么写,我们一起来看一看
通过总结,我们可以从错误中吸取教训,避免犯同样的错误。写总结时,可以从事物发展的全局、重要事件和个人成长等方面进行思考。总结范文可以激发我们的写作灵感,帮助我们
总结是在一段时间内对学习和工作生活等表现加以总结和概括的一种书面材料,它可以促使我们思考。写总结时可以参考一些优秀的范文,以获得更多的写作思路和技巧。以下是一些
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。相信许多人会觉得范文很难写?下面是小编帮大家整理的优质范文,仅供参考,大家
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。那么我们该如何写一篇较为完美的范文呢?以下是
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。那么我们该如何写一篇较为完美的范文呢?以下是小编为大家收集的优秀范文,欢迎
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。大家想知道怎么样才能写一篇比较优质的范文吗?下面是小编
为了确定工作或事情顺利开展,常常需要预先制定方案,方案是为某一行动所制定的具体行动实施办法细则、步骤和安排等。那么我们该如何写一篇较为完美的方案呢?以下是小编给
时间就如同白驹过隙般的流逝,我们又将迎来新的喜悦、新的收获,让我们一起来学习写计划吧。优秀的计划都具备一些什么特点呢?又该怎么写呢?这里给大家分享一些最新的计划
在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。大家想知道怎么样才能写一篇比较优质的范文吗?以下是我
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。相信许多人会觉得范文很难写?下面我给大家整理了一些优
musicolet
2025-08-21
Musicolet作为一款高质量音乐播放器,确实不负众望。它不仅汇集了海量的音乐资源,包括网络热歌与歌手新作,即便是小众歌曲也能轻松找到,满足不同用户的音乐需求。更重要的是,该软件干扰,提供清晰音质和完整歌词,为用户营造了一个纯净、沉浸式的听歌环境。对于追求高品质音乐体验的朋友来说,Musicolet绝对值得一试。
Anyview阅读器的历史版本是一款出色的在线小说阅读软件,它提供了详尽而全面的小说分类,涵盖了都市、武侠、玄幻、悬疑等多种类型的小说。用户可以随时在线阅读自己喜欢的小说,并且该软件还支持多种阅读模式和功能设置,让用户能够自由地免费阅读感兴趣的内容。这不仅为用户带来了全方位的追书体验,还配备了便捷的书架管理功能,方便用户轻松收藏热门小说资源,并随时查看小说更新情况,以便于下次继续阅读。欢迎对此感兴趣的用户下载使用。
BBC英语
2025-08-21
BBC英语是一款专为英语学习设计的软件,它提供了丰富多样的专业英语学习资源。无论你是想提高口语水平还是锻炼听力能力,这里都有专门针对这些需求的训练内容。此外,该软件还能智能地评估和纠正你的口语发音,帮助你使发音更加标准、记忆更加准确。
百度汉语词典
2025-08-21
百度汉语词典是一款专为汉语学习设计的软件。通过这款软件,用户能够访问到丰富的汉语学习资源,包括详细的学习计划和学习进度统计等功能,提供了非常全面的数据支持。该软件还支持汉字查询,并且可以进行多种词典内容的关联搜索,从而在很大程度上满足了用户对于汉语学习的各种需求。
屏幕方向管理器是一款专为用户提供手机方向控制服务的应用程序。作为一款专业的管理工具,它能够强制调整手机屏幕的旋转方向。这款应用程序提供了多种功能,使用户能够轻松选择个性化的屏幕旋转方式。此外,屏幕方向管理器还具备丰富的设置选项,让用户可以通过简单的操作实现更多个性化配置,使用起来既方便又快捷。

关于我们 | 网站导航 | 网站地图 | 购买指南 | 联系我们

联系电话:(0512)55170217  邮箱: 邮箱:3455265070@qq.com
考研秘籍网 版权所有 © kaoyanmiji.com All Rights Reserved. 工信部备案号: 闽ICP备2025091152号-1