无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。相信许多人会觉得范文很难写?下面是小编帮大家整理的优质范文,仅供参考,大家一起来看看吧。
教学设计意义论文篇一
五年级 魏丽君
教学目标: 1.理解比例的意义,掌握组成比例的关键条件,并能正确的判断两个比能否组成比例。
2.通过动手、动脑、观察、计算、讨论交流等方式,使学生自主获取知识,全面参与教学活动,体验获取获取知识的过程。
3.培养学生在实际生活中发现数学的存在,感受数学的区位和快乐,获得成功体验,增强学好数学的信心,提高学习积极性。适时进行爱国主义教育。教学重点: 理解比例的意义。教学难点: 应用比例的意义判断两个比能否组成比例,并能正确地组成比例。教学过程:
一、创设情境
1、播放国歌 :
你知道他们在干什么?
你们知道在哪些地方可以看到国旗呢?
2、媒体出示国旗画面,学生观察,激发爱国情操,并分别说出是什么地方。 天安门升国旗仪式
校园升旗仪
教室场景 三幅图不同的场景,都有共同的标志——国旗,国旗是中华人民共和国的象征;这些国旗有大有小,你想不想知道这些国旗的长和宽是多少吗?
3、媒体出示国旗的长和宽,并提出问题。(1)呈现信息:
天安门升国旗仪式:长5米,宽10/3米。校园升旗仪式:长2.4米,宽1.6米。教室场景:长60厘米,宽40厘米。
(2)问:这些国旗的大小不一,是不是国旗想做多大就做多大呢?是不是这中间隐含着什么共同点呢?
4、学生探索,发现问题。
(1)设计问题:每面国旗的大小不一样,但是它的长和宽中却隐含着共同的特点,是什么呢?
(2)学生自主探索:学生自主观察、计算,发现国旗的长和宽的比值相等。(3)通过计算,发现它们的比值都相等,解释说明我国国旗法规定:任何一面国旗的长宽之比都是3:2。,这是对国旗的尊重,进行爱国主义教育。
二、认识比例,理解含义
1、引出比例,理解比例的意义。
(1)媒体出示操场上的国旗和教室里国旗长和宽,计算出两面国旗的长和宽的比值。
并板书:
2.4∶1.6 =3/2
60∶40=3/2(2)引导写出:指出这两面国旗的长和宽的比值相等,中间可以用等号连接,并板书:2.4∶1.6 =60∶40(3)指着这些等式说:“在数学中,像这样的等式就叫做比例(4)学生尝试说说什么叫比例。
(5)共同归纳,得出结论:表示两个比相等的式子叫做比例。这就是我们这节课所学的内容“比例的意义”。(板书课题)请同学们齐读并理解。
2、探讨一:判断两个比是否能够组成比例,关键是什么?(学生讨论,教师参与引导)
3、探讨二:我们刚才一直在强调比和比例的联系,那么比和比例有什么区别吗?(小组讨论)
学生从形式上区分:比由两个数组成;比例由四个数组成。
学生从意义上区分:比表示两个数相除;比例表示两个比相等的式子。
三、巩固应用
课本做一做(1)选择两题。(学生汇报比值是否相等,所以成不成比例。)(四)拓展练习(课件演示):
1、猜一猜并填空,说说你是怎样思考的? 120:6 =():2
2、生活中的比例 。
导语:通过刚才的几组题,我们进一步弄清了比例的意义,现在让我们一起来看看生活中的比例吧!(1)课前三面国旗有关数据还能组成哪些比例呢?
(2)汽车上午5小时行驶了250千米,下午2.5小时行驶了125千米。a、分别写出上午、下午路程的比和时间的比,求出比值,看两个比能否成比例?
b、分别写出上午、下午时间与路程的比,求出比值,看两个比能否组成比例?
四、总结评价 。
1、课件出示:你说我说大家说,说你说我说大家。(前一句偏重是说收获,后一句是互相评价,当然包括评价老师。)
2、课件出示老师的话:我为你们今天的表现感到骄傲和感动!期待你们更好的表现!
总结:同学们说的很好,通过这节课的学习,我们认识了比例,并会判断两个比能否组成比例,还会自己根据数据组比例,看来同学们这节课真是掌握了不少的知识,继续加油哦!板书设计:
比例的意义
表示两个比相等的式子叫做比例。
2.4:1.6=3/2
60:40=3/2
2.4:1.6=60:40
教学反思:
比例这部知识是在学习了比的知识和除法与分数关系的基础上教学的,属于概念教学,为以后解比例,讲解正、反比例做准备的。学生学好这部分知识,不仅可以初步接触对应函数的思想,而且可以用来解决日常生活中一些具体的问题。
本节课,为了更好地突出重点,突破难点,按照学生的认知规律,遵循自主性原则,主要让学生在情境中通过观察、计算、比较等的学习过程中掌握知识。为充分调动学生的学习积极性,促进学生有效学习。本节课力求做到以下几点:
一、创造有效学习情境,激发学习激情。
数学课堂教学需要必要的生活情境,这节课为学生提供四个实际情境图,创设这个情境有五方面的考虑:一是歌曲情境引入;二生活情境和已有知识经验、基础引入比例意义的教学;三是依据四面国旗长与宽可以组成多个比例式。四是有助于在教学中渗透爱国主义教育,注重了“数学化”和“生活化”,为学生展现出了“活生生”的思维活动过程,充分发扬自主。
二、活用教材。
教材是提供给学生学习内容的一个文本,我根据学生和自己的情况,大胆对教材进行了再思考、再开发和再创造,用活、用实教材。这节课中在四面国旗的尺寸中找比组成比例,学生比较容易找到国旗长与宽的比,两两可以组成比例。同样国旗宽与长的比,两两也可以组成比例。另外每两面国旗的长之比与它们的宽之比也可以组成比例,课题中通过“你还能找出其它的比例吗?”的提问,鼓励学生打开思路,充分发挥合作学习的作用,调动学习的主动性,从不同角度去寻找,以加深对比例意义的认识。
教学设计意义论文篇二
1、教学设计的意义,教学设计与备课息息相关。 教学设计是教师进行教与学研究活动的先决条件,也是教师上好课的关键因素之一。教学设计的好坏与课堂教学的效果息息相关。
2、怎么进行教学设计? 设计什么内容&怎么设计
教学设计要想真的有效果,第一不要从网上下载别人的教学设计,可以参考,但是要有自己的思考在里面。移植也要内化,教学设计不是给别人看的,是给自己看的。教学设计的过程中一定要体现学生的学习活动,如果教学设计只是反应老师的教学流程,但没有更多的考虑学生的学习活动,是空洞的。教师要时刻反思自己的教学对学生学习的影响。
要结合课标、学科改革意见及先进的教育教学理论,结合先进的教育教学理论,要抓住其中最核心的部分和本质,切记照搬照抄,然后根据核心部分给予学生适度的提升。教学要基于学生的认知,如果在教学之前对学生的认知有所了解,然后针对学生的认知设计教学,对后面教学能够达到事半功倍的效果。
教材无非就是个例子。——叶圣陶
先进的教育教学理论是教学的指导,老师要给学生创立一个长期训练的教学生态环境,让学生的学生能力有所提高,教育教学理论与教学紧密结合起来,语文学科教学要更多体现文化,教育得最终目的不是传授已有的东西,而是要把人的创造能力诱导出来,将生命感、价值感唤醒。
老师的责任在于唤醒,而不在于告诉。
从知识到智慧中间有一段距离,就是学生的体验。从体验中感悟,形成自己的智慧,老师告诉学生很容易,不要轻易告诉学生,通过课程,培养一种素养。要注意素养的提升。老师想要告诉学生一个知识点很容易,自主。自主、合作、探究,探究的前提是自主,学生的潜能无限,老师应该学会放手,要相信学生,翻转课堂、学习杜郎口让学生学会自主,当学生哪天离开老师也能自主学习,用老师教授的方法去解决很多问题,由自主变为自觉,引导学生自己去发现问题,自己去解决问题,教师则要积极的去给学生创造自主学习的空间。教师要培养学生自主学习的意识和自主学习的能力,在课堂上给学生们空间去让他们呈现自己预先学到的东西,然后老师根据学生的学情来调整自己的教学。在课堂上及时调整。
课程的主要思想是什么。教学内容的选择不要面面俱到,不要贪多,要抓住核心的东西重点突破。
老师对学生要有方向上的点播,教学要站在课程的高度上,对于学生新学的,曾经学过、熟练掌握的要采取不同的教学方法
教学设计意义论文篇三
《方程的意义》教学设计
华宁县甸尾小学 王 惠
教学内容: 教材53页、54页的内容 教学目标:
1、使学生理解和掌握等式与方程的意义,明确方程与等式的关系,会用方程表示生活情境中简单的数量关系。
2、通过学生观察思考,探讨交流,培养学生抽象、归纳和概括 的能力。
3、感受方程与生活的密切联系,培养进一步探究方程知识的乐 趣和欲望。
教学重点:在具体的情境中,理解方程的含义。教学难点:体会等式与方程的关系。
一、复习旧知,为新课做铺垫
(一)在括号里填上适当的式子
1、一个皮球的价格是a元,买5个皮球应付()元。
2、哥哥b岁,比妹妹大a岁,妹妹()岁。
3、小芳看一本x页的故事书,每天看4页,需要用()天看完。(二)、复习等式
以练习的形式引导学生说出等式的意义:数学中用等号来表示相等关系的式子叫做等式。
二、学习新课,认识方程
(一)、创设情境,抽象数学算式
1、认识天平(称)
(1)教师演示课件,提问:①这是什么? ②天平有什么作用?天平的原理是什么呢?(2)学生积极回答,教师充分肯定学生的想法。
(3)教师总结并引入新课:天平可以用来量取物体的重量。今天这 节课我们就利用这个天平进行演示来研究一下相关的数学问题。
2、创设情境,抽象数学算式
(1)一个天平左盘上放了一个玻璃杯,右盘上放了100 g重的砝码,正好平衡。师:请看这幅图。
思考:看了这幅图你知道了什么?生答。
师:对,我们找到了这样一个等量关系,(课件出示:1个空杯子=100g)
3.课件出示第三幅图:一个天平左盘上放了一个加约150毫升水(红色)的玻璃杯,右盘上放了100 g重的砝码,天平左低右高。师:如果我们在杯中加约150毫升的水呢?为了大家看得更清楚,老师在水中滴几滴红墨水。
问:这时发生了什么变化?(生能答:杯子里倒了水,水有重量,天平就不平衡了。)
问:如果水重x克,你能用一个式子表示天平两边的结果吗? 生回答后,课件、卡片出示:100+x>100 4.课件出示第四幅图:一个天平左盘上放了一个加了水的玻璃杯,右盘上加了100 g重的砝码,天平还是左低右高。
师:天平出现了倾斜,因为杯子和水的质量加起来比100克重,要使天平平衡,该怎么做?(增加砝码)对,要需要增加砝码的质量。师:怎么样?刚才左低右高,现在呢?(生能答:还要加砝码)那就在加100 g重的一个砝码。(课件演示:右盘上再放100 g重的砝码,天平出现左高右低。)
师:现在什么情况?(生答:左高右低)这种情况你能用式子来表示吗?可以同桌讨论。
学生回答后课件、卡片出示: 100+x<300 问:观察列出的两个式子,有什么共同的地方?
这个问题可能稍有难度,教师可以引导:当天平两边不平衡,一边比一边重时,要表示两边的关系,我们就可以用这样的不等式表示。(板书:不等式)
问:能再举几个这样的不等式吗?
(学生列出不等式,教师选择两个写在卡片上贴于黑板。)5.课件出示第五幅图:一个天平左盘上放了一个加了水的玻璃杯,右盘上放了250 g重的砝码,天平平衡。
师:下面老师把其中一个100 g重的砝码换成50 g重的砝码。你再来观察一下。
(学生看到都说:平衡了)问:谁来表示这个式子? 学生回答后课件:100+x=250 师:仔细观察以上的式子这个就是我们今天要学习的新的知识方程。那么方程的什么呢? 请同学组织回答
含有未知数的等式就是方程
师:我们已经知道什么是方程,那么我们要怎样来判断一个式子是不是方程呢?
两个条件:一定是等式 一定含有未知数
三、探究交流,抽象概括
1、判断以下的式子哪些是方程
2、辨析
(1)100+200=100+200(2)100+x>200;100+x
3、思考:方程与等式之间存在怎样的关系? 方程是否一定是等式? 等式是否一定是方程? 方程和等式之间的关系
方程一定是等式,但等式不一定方程。
四、巩固提高,形成技能 1.说一说——列出方程 2.练一练
(1)你能根据已学知识写出至少一个列出方程吗?(2)你能根据下面的数量之间的相等关系列出方程吗?
①王涛去商店买了3本笔记本,每本x元。他付给售货员阿姨20元,找回2元。
②张华从家到学校有500米,他每分钟走60米,走了x分钟。离学校还有80米。
(3)怎样才能使两个杯子里的水一样多?
3、你知道吗?
课件动态显示关于方程的小知识。
你知道吗?早在三千六百多年前,埃及人就会用方程解决数学问题了。在我国古代,大约两千年前成书的《九章算术》中,就记载了用一组方程解决实际问题的史料。一直到三百年前,法国数学家笛卡儿第一个提倡用x、y、z等字母代表未知数,才形成了现在的方程。
五、总结提升
1、什么是方程?
2、怎么列简单方程? 板书设计:
方程的意义
方程的含义:100+x=250含有未知数的等式叫方程
方程和等式的关系:方程一定是等式 但等式不一定是方程
教学设计意义论文篇四
《正比例的意义》教学设计
【课 题】:
人教版小学数学六年级(下)《正比例的意义》 【教材简解】:
正比例的意义是小学数学人教版六年级(下)第4单元的教学内容。这部分知识是在学生具有比和比例的知识以及认识常见数量关系的基础上编排的,通过对两个数量保持商一定的变化,理解正比例的意义,初步渗透函数的思想。
【教学目标】:
1、知识能力:使学生认识正比例的意义,理解、掌握成正比例量的变化规律及其特征。
2、过程与方法:能根据正比例的意义判断两种相关联的量成不成正比例关系。
3、情感态度与价值观:进一步培养学生观察、分析、综合等能力;培养学生的抽象概括能力和分析判断能力。
【重点、难点】:
重点:使学生理解正比例的意义。
难点:引导学生通过观察、思考发现两种相关联的量的变化规律(即它们相对应的数的比值一定),从而概括出正比例关系的概念。
【设计理念】:
本节课的教学设计遵循以下几点设计理念:
1、抽象实际事例中的数量变化规律,形成正比例的概念。
例1是让学生初步感知“两种相关联的量”以及“成正比例的量”的含义。教材先指出路程和时间是两种相关联的量,用“时间变化,路程也随着变化”具体解释两种量的“相关联”。再指出这辆汽车行驶的路程和时间的比的比值总是一定,可以说路程和时间成正比例,它们是成正比例的量,学生在这里首次感知了正比例关系。“试一试”是在另一组数量关系中继续感知正比例关系。使得学生在上面两个实例中感知了正比例的具体含义,然后教材再抽象概括出正比例的意义,这一环节是概念形成的重要环节,也是发展数学思考的极好机会。
2、用图像直观表达正比例关系。
例2是按照《课程标准》的要求“根据给出的有正比例关系的数据在有坐标系的方格纸上画图,并根据其中一个量的值估计另一个量的值”编排的,设计的三个问题体现了教学正比例图像的三个步骤。
第一步认识图像上的点,说出其他各点的具体含义,体会各个点都表示汽车在某段时间所行驶的路程,也体会这些点是根据对应的时间与路程的数据在方格纸上画出来的。
第二步认识图像的形状,从图中描出的点在一条直线上,体会正比例关系的图像是一条直线。
第三步应用图像,估计行驶时间所对应的路程或者行驶路程所用的时间。【教学过程】:
一、复习准备: 口答(课件演示)
1、已知路程和时间,怎样求速度?
2、已知总价和数量,怎样求单价?
3、已知工作总量和工作时间,怎样求工作效率?
二、新授教学: (一)自学
课件出示以下两组自学材料:
1、一辆汽车行驶的时间和路程如下 时间(比)1 2 3 4 5 6 „„ 路程(千米)50 100 150
„„ 观察上表,填写表格并思考下列问题:(1)表中有哪两种相关联的量?
(2)路程是怎样随着时间变化而变化的?
(3)相对应的路程和时间的比分别是什么?比值是多少?
2、一种圆珠笔,枝数和总价如下表 数量(枝)1 2 3 4 5 6 „„ 总价(元)1.6 3.2 4.8
„„ 观察上表,填写表格并思考下列问题:(1)表中有哪两种相关联的量?
(2)总价是怎样随着数量变化而变化的?
(3)相对应的总价和数量的比分别是什么?比值是多少?(二)反馈:
师:在填表过程中,你发现了什么?每一组材料中的两种量有什么关系?它们的变化有规律吗?
1、学生自由说,小组内总结。(小组汇报,教师小结。)小结:像这样表里的两种量,一个量变化,另一个量也随着它的变化而变化的,这两种量就是相关联的量。
【根据学生反馈板书】: ①两种相关联的量
②一种量扩大(或缩小)另一种量也扩大(或缩小)③两种量中相对应的两个量的比的比值是一定的(说明:相对应的两个数的比的比值都一样或固定不变,在数学上叫做“一定”)
2、概括正比例的意义。
(1)师:刚才同学们通过填表、交流,知道了时间和路程是两种相关联的量,路程随着时间的变化而变化。时间扩大,路程随着扩大;时间缩小,路程也随着缩小。它们扩大、缩小的规律是:路程和时间的比的比值总是一定的。总价和数量也是两种相关联的量,总价随着数量的变化而变化。数量扩大,总价随着扩大;数量缩小,总价也随着缩小。它们扩大、缩小的规律是:总价和数量的比的比值总是一定的。这样我们就可以用数量关系式来表示:
【板书】:路程÷时间=速度(一定)总价÷数量=单价(一定)问:谁来说说这两个数量关系式的意思?
(2)小结:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。这就是我们今天要学习的内容。
【板书课题】:成正比例的量
追问:判断两种相关联的量成不成正比例的关键是什么?(比值是不是一定)(3)字母表达关系式。
问:如果字母y和 x分别表示两种相关联的量,用k表示它们的比值,正比例关系怎样用字母表示出来?
【板书】: =k(一定)(4)质疑。
师:根据正比例的意义以及表示正比例关系的式子想一想:构成正比例关系的两种量必须具备哪些条件?
(三)探究:
1、课件出示表格
时间/时 1 2 3 4 5 6 „„ 路程/千米 80 160 240 320 400 480 „„
根据表中列出的两种量,教师在黑板上分别画出横轴和纵轴。问:你能根据表中的每组数据,在方格图中找一找相应的点,并依次描出这些点吗?
2、学生尝试画出正比例的图像。
3、展示、纠错。
强调:每个点都应该表示路程和时间的一组对应数值。
4、回答例2图像下面的问题,重点弄清: (1)说出每个点表示的含义。
(2)为什么所描的点在一条直线上?
(3)你能根据时间(路程)估计所对应的路程(时间)吗?你是怎么看的? 借助直观的图像理解两种量同时扩大或缩小的变化规律。(四)应用:
1、判断下面每题中两种量是不是成正比例,并说明理由。(1)苹果的单价一定,购买苹果的数量和总价。(2)长方形的长一定,它的宽的面积。
(3)每小时织布米数一定,织布总米数和时间。(4)小新跳高的高度和他的身高。
学生独立思考,指名回答,课件演示核对。
2、完成练习十三第2题。
先让学生独立判断,再指名学生有条理地说明判断的理由。
3、完成练习十三第3题。
先让学生说出把已知的正方形按怎样的比放大,放大后正方形的边长各是几厘米?再画一画。
分别求出每个图形的周长和面积,并填写表格。
讨论、明确:只有当两种相关联的量的比值一定时,它们才成正比例。
4、完成练习。学生先独立填表,再根据表中的数据描出长度和总价所对应的点,把它们按顺序连起来。(组织同桌讨论和交流)
三、课堂小结:
师:通过这节课的学习,你们都知道了什么?怎样判断两种量是否成正比例?
四、课堂延伸:
思考:正方形的边长和面积成正比例吗?
五、课外作业:
完成练习十三第1、4题。
六、板书设计: 正比例的意义 ①两种相关联的量
②一种量扩大(或缩小)另一种量也扩大(或缩小)③两种量中相对应的两个量的比的比值是一定的 路程÷时间=速度(一定)
总价÷数量=单价(一定)
=k(一定)

一键复制